Patterns for Asynchronous
Invocations in Distributed
Object Frameworks

Markus Voelter Michael Kircher Uwe Zdun Michael Englbrecht
Voelter, Siemens AG, New Media Lab, AddOn Software GmbH,
Ingenieurbtro fur Corporate Technology, Department of Germany,
Softwaretechnologie, Software and System Information Systems,)
Germany, Architectures, Vienna University of Michael.Englbrecht@addon.de
voelter@acm.org Germany, Economics,
michael .kircher@siemens.com Austria,

zdun@acm.org

NOTE: These patterns will appear in a heavily reworked and
updated version in the Remoting Pattern book [VKZ04], to be
published by Wiley in 2004.

The patterns in this paper introduce the four most commonly
used techniques for providing client-side asynchrony in dis-
tributed object frameworks. FIRE AND FORGET describes best-
effort delivery semantics for asynchronous operations that
have void return types. SYNC WITH SERVER notifies the client
only in case the delivery of the invocation to the server
application fails. POLL OBJECTS provide clients with means to
query the distributed object framework whether an asyn-
chronous response for the request has arrived yet, and if so,
to obtain the return value. RESULT CALLBACK actively notifies
the requesting client of the returning result.

Introduction

OO-RPC middleware typically provides synchronous remote method
invocations from clients to server objects. In some scenarios, asynchro-
nous behavior is necessary, though. This collection of patterns
introduces the four most commonly used techniques in this context.

FIRE AND FORGET describes best-effort delivery semantics for asynchro-
nous operations that have void return types. SYNC WITH SERVER looks
the same from the client’s point of view, however it is able to notify the
client (by throwing an exception) in case the delivery of the invocation
to the SERVER APPLICATION fails. POLL OBJECTS provide clients with
means to query the distributed object framework whether an asynchro-
nous reply for the request has arrived yet, and if so, to obtain the return
value. Last but not least, RESULT CALLBACK will actively notify the
requesting client of the returning result.

Note that these patterns are part of a larger pattern language on
remoting middleware (see also [VKZ04]). This is why some of the
PATTERN REFERENCES point to patterns not found in this paper.

Result to Ack to Responsibil-
client client ity for result
Fire and Forget no no -
Sync with Server no yes -
Poll Object yes yes Client is
responsible
Result Callback yes yes Client is

informed via
callback

Fire and Forget

Your SERVER APPLICATION provides REMOTE OBJECTS with operations
that have neither a return value nor report any exceptions.

R
e > B

In many situations, a client application needs to invoke an operation
on a REMOTE OBJECT simply to notify the REMOTE OBJECT of an event.
The client does not expect any return value. Reliability of the invoca-
tion is not critical, as it is just a notification that both client and server
do not critically rely on.

Consider a simple logging service implemented as REMOTE OBJECT.
Clients use it to record log messages. But recording of log messages
must not influence the execution of the client. For example, an invoca-
tion of the logging service must not block. Loss of single log messages
is acceptable.

Note that this scenario is quite typical for distributed implementations
of patterns, such as Model-View-Controller [BMR+96] or Observer
[GHJV95], especially if the view or observer is constantly notified and
old data is stale data.

Therefore:

Provide FIRE AND FORGET operations. When invoked, the REQUESTER
sends the invocation across the network, returning control to the
calling client immediately. The client does not get any acknowledge-
ment from the REMOTE OBJECT receiving the invocation in case of
success or failure.

Process A . Server Process
g
(> c ()
3 Invoker
Requester - A I
} l 2) <<send>> I
Client 1) <<invoke>> -
&
g

When the client invokes a FIRE AND FORGET operation, the
REQUESTER marshals the parameters and sends them to the
server.

e b
P -

The implementation of a FIRE AND FORGET operation can be done in
multiple ways, specifically:

* The REQUESTER can simply put the bytes on the wire in the caller’s
thread, assuming the send operation does not block. Here, asyn-
chronous I/O operations, as supported by some operating systems
are of great help to avoid blocking.

* Alternatively, the REQUESTER can spawn a new thread, that puts
the bytes on the wire independently from the thread that invoked
the remote operation. This variant also works when the send oper-
ation temporarily blocks. However, this variant has some
drawbacks: it works only as long as the application does not get
bogged down from the operating system perspective due to huge
numbers of such threads, and the existence of such threads does
not overwhelm the underlying marshaling, protocol, and transport
implementations due to lock contention, etc. Another drawback of
concurrent invocations is that an older invocation may bypass a
younger one. This can be avoided by using MESSAGE QUEUES.

* As FIRE AND FORGET operations are not considered to be reliably
transported, an option is to use unreliable protocols such as UDP
for their implementation, which are much cheaper than reliable
protocols such as TCP.

The INVOKER on the server side typically differentiates between FIRE
AND FORGET operations and synchronous operations, as it is not neces-
sary to send a reply for a FIRE AND FORGET operation. When the remote
invocation is performed in a separate thread, a thread pool will be used
instead of spawning a new thread for each invocation to avoid a thread
creation overhead.

In cases where the distributed object framework does not provide FIRE
AND FORGET operations, the application can emulate such behavior by
spawning a thread itself and performing the invocation in that newly
created thread. But be aware that such an emulation heavily influences

the scalability. In particular, many concurrent requests lead to many
concurrent threads, decreasing overall system performance.

The benefit of the FIRE AND FORGET pattern is the asynchrony it
provides compared to synchronous invocations. Client and REMOTE
OBJECT are decoupled, in the sense that the REMOTE OBJECT executes
independently of the client; the client does not block during the invoca-
tion. This means the pattern is very helpful in event-driven
applications that do not rely a continuous control flow nor on return
values. Further, it is important that the applications do not rely on the
successful transmission.

However, REMOTING ERRORS during sending the invocation to the
remote object or errors that were raised during the execution of the
remote invocation cannot be reported back to the client. The client is
unaware whether the invocation ever got executed successfully by the
REMOTE OBJECT. Therefore, FIRE AND FORGET usually has only “best
effort” semantics. The correctness of the application must not depend
on the “reliability” of a FIRE AND FORGET operation invocation. To cope
with this uncertainty, especially in situations, where the client expects
some kind of action, clients typically use time-outs to trigger counter-
actions.

Sync with Server

Your SERVER APPLICATION provides REMOTE OBJECTS with operations
that have neither return value nor report any errors, but FIRE AND
FORGET is too unreliable.

g g
m> e

FIRE AND FORGET is a useful but extreme solution in the sense that it
can only be used if the client can really afford to take the risk of not
noticing when a remote invocation does not reach the targeted
REMOTE OBJECT. The other extreme is a synchronous call where a
client is blocked until the remote method has executed successfully
and the result arrives back. Sometimes the middle of both extremes
is needed.

Consider a system that stores images in a database. Before the images
are actually stored in the database, they are filtered, for example by a
Fourier transformation that may take rather long. The client is not
interested in the result of the transformation but only in a notification
that it is delivered as a message to the server. Thus the client does not
need to block and wait for the result; it can continue executing as soon
as the invocation has reached the REMOTE OBJECT.

In this scenario, the client only has to ensure that the invocation
containing the image is transmitted successfully. However, from that
point onwards it is the responsibility of the SERVER APPLICATION to
make sure the image is processed correctly and then stored safely in the
database.

Therefore:

Provide SYNC WITH SERVER semantics for remote invocations. The
client sends the invocation, as in FIRE AND FORGET, but waits for a
reply from the SERVER APPLICATION informing it about the successful
reception (not the execution!) of the invocation. After the reply is
received by the REQUESTER, it returns control to the client and execu-
tion continues. The SERVER APPLICATION independently executes the
invocation.

Process A

Ayt

- a
3) <<return>>

Server Process
O] Fomre
INVOKeE: -
,,,,,,,, » O— Object

Invoker

2) <<reply>> '

A client invokes a remote operation. The REQUESTER puts
the bytes of the invocation on the wire, as in FIRE AND FOR-
GET. But it then waits for a reply from the SERVER APPLICA-
TION, that the invocation has been received from by the
server.

Client

H |-}

! @®©

R
e > B

Note, that, as in FIRE AND FORGET, no return value or out parameters of
the remote operation can be carried back to the client. The reply sent by
the SERVER APPLICATION is only to inform the REQUESTER about the
successful reception.

If the distributed object framework supports SYNC WITH SERVER opera-
tions, the INVOKER can send the reply message immediately after
reception of the invocation. Otherwise, SYNC WITH SERVER can be
emulated by hand-coding SYNC WITH SERVER into the respective opera-
tion of the REMOTE OBJECT. The operation spawns a new thread that
performs the remote invocation while the initial thread invoking the
remote invocation returns immediately resulting in a reply to the client.

Compared to FIRE AND FORGET, SYNC WITH SERVER operations ensure
successful transmission and thus make remote invocations more reli-
able. However, the SYNC WITH SERVER pattern also incurs additional
latency - the client has to wait until the reply from the SERVER APPLICA-
TION arrives. Eventually, it also has to retransmit the invocation.

Note that the REQUESTER can inform the client of system errors, such as
a failed transmission of the invocation. However, it cannot inform
clients about application errors during the execution of the remote
invocation in the REMOTE OBJECT because this happens asynchronously.

Poll Object

Invocations of REMOTE OBJECTS should execute asynchronously but the
client depends on the results for further computations.

g b e
-

There are situations, when an application needs to invoke an opera-
tion asynchronously, but still requires to know the results of the
invocation. The client does not necessarily need the results immedi-
ately to continue its execution, and it can decide for itself when to use
the returned results.

Consider a client that needs to prepare a complex XML document to be
stored in a relational database that is accessed through a REMOTE
OBJECT. The document shall have an unique ID, which is generated by
the database system. Typically, a client would request an ID from the
database, wait for the result, create the rest of the XML document, and
then forward the complete document to the remote object for storage in
the database. A more efficient implementation is to first request the ID
from the database. Without waiting for the ID, the client can prepare
the XML document, receive the result of the ID query, put it into the
document, and then forward the whole document to the REMOTE OBJECT
for storage.

In general, a client application should be able to make use of even short
periods of latency, instead of blocking idle until a result arrives.

Therefore:

As part of the distributed object framework, provide POLL OBJECTS,
that receive the result of remote invocations on behalf of the client.
The client subsequently uses the POLL OBJECT to query the result. It
can either just query (“poll”), whether the result is available, or it can
block on the POLL OBJECT until the result becomes available. As long
as the result is not available on the POLL OBJECT, the client can
continue with other tasks asynchronously.

Process A . i Server Process
S
: = i)— N\E O Invoker
Client f| 3) resAvail() = false Requester i ‘8‘\-/' TIVORET
= e /
()
u 5) resAvail() = true I\ i %/
Poll Q
Rl Obiect | | 4) storeResult(result) ' a
= i =
6) getResult() I :

A client invokes an remote operation on the REQUESTER,
which in turn creates a POLL OBJECT to be returned to the cli-
ent immediately. As long as the remote invocation has not
returned, the “result available” method returns false.
When the result becomes available, it is memorized in the
POLL OBJECT. When it is polled the next time, it returns true,
so that the client can fetch the result by calling the “get re-
sult” method.

R
e > B

The POLL OBJECT has to provide at least two operations: one to check if
the result is available; the other to actually return the result to the
calling client. Besides this client interface, an operation for storing the
result as received from the server is needed.

Most POLL OBJECT implementations also provide a blocking operation
that allows clients to wait for the availability of the result, once they
decide to do so. The core idea of this pattern follows the Futures concept
described in [Lea99], but POLL OBJECT extends it to distributed settings
and allows to query for the availability of the result non-blocking,
whereas with Futures this query would block.

POLL OBJECTS typically depend on the interface of the REMOTE OBJECT. To
be able to distinguish results of two invocations on the same remote
object, either, the two above mentioned methods must be provided for
each of the remote object’s operations, or a separate POLL OBJECT for
each operation must exist.

Use POLL OBJECTS when the time until the result is received is expected
to be rather short; however, it should be long enough so that the client

can use the time for other computations. For longer waiting periods,
especially if the period cannot be pre-estimated, use a RESULT CALL-
BACKS, as it is typically hard to cope with long waiting periods.

POLL OBJECTS offers the benefit that the client application does not have
to use an event-driven, completely asynchronous programming model,
as in the case with RESULT CALLBACK, while it can still make use of asyn-
chrony to some extend. The SERVER APPLICATION can stay unaware to
client side poll objects.

From an implementation perspective, the client framework typically
starts a separate thread to “listen” for the result and fill it into the POLL
OBJECT. In this thread, the client typically sends a synchronous invoca-
tion to the SERVER APPLICATION.

Some synchronisation mechanisms between the client thread and the
retrieving thread are needed, for instance by applying mutexes or a
Thread-Safe Interface [SSRBOO].

When using POLL OBJECTS the client has to be changed slightly to do the
polling. POLL OBJECTS either need to be generic, which typically requires
programming language support, or they have to be specific to the
REMOTE OBJECT and its interface operations. In the latter case they are
typically code generated. More dynamic environments can use
runtime means to create the types for POLL OBJECTS.

Result Callback

Your SERVER APPLICATION provides REMOTE OBJECTS with operations
that have return values and/or may return errors. The result of the
invocation is handled asynchronously.

da da L
==

The client needs to be actively informed about results of asynchro-
nously invoked operations on a REMOTE OBJECT. That is, if the result
becomes available to the REQUESTER, the client wants to be informed
immediately to react on it. In the meantime the client executes
concurrently.

Consider an image processing example. A client posts images to a
REMOTE OBJECT specifying how the images should be processed. Once
the REMOTE OBJECT has finished processing the image, it is available for
download and subsequently displayed on the client. The result of the
processing operation is the URL where the image can be downloaded
once it is available. A typical client will have several images to process
at the same time, and the processing will take different periods of time
for each image - depending on size and calculations to be done.

In such situations a client does not want to wait until an image has been
processed before it submits the next one. However, the client is still
interested in the result of the operation to be able to download the
result.

Therefore:

Provide a callback-based interface for remote invocations on the
client. Upon an invocation, the client passes a RESULT CALLBACK
object to the REQUESTER. The invocation returns immediately after
sending the invocation to the server. Once the result is available, the
distributed object framework invokes a predefined operation on the
RESULT CALLBACK object, passing it the result of the invocation (this
can be triggered by the CLIENT REQUEST HANDLER, for instance).

Process

—.2) <<invoke>> A Requester
'—| 3) <<invoke>> '

A Server Process

¥ O Invoker

Client
/

/ | 4) finished(result) I\

Machine Boundary

<>_ Callback
1) <<create>> ' ¥ Object

The client instantiates a callback object and invokes the op-
eration on the REQUESTER. When the result of the remote in-
vocation returns, it is dispatched by the distributed object
framework to the callback object, calling a pre-defined call-
back method.

EO

You can use the same or separate callback objects for each invocation of
the same type. Somehow the correct callback object has to be identified.
There are different variants, and it depends on the application case
which variant works better:

* When you reuse a callback object you obviously need an Asynchro-
nous Completion Token [SSRB00] to associate the callback with the
original invocation. An Asynchronous Completion Token contains
information that uniquely identify the callback object and method
that is responsible for handling the result message.

* In cases where a callback object is not reused, responses to
requests, do not need to be further demultiplexed, which simpli-
fies interaction and no Asynchronous Completion Token is necessary.

Using RESULT CALLBACK the client can immediately react on results of
asynchronous invocations. As in the case of POLL OBJECT, the SERVER
APPLICATION has nothing to do with the specifics of result handling in
the client. The use of RESULT CALLBACK requires an event-driven appli-
cation design, whereas POLL OBJECTS allow to keep a synchronous
programming model.

However, the RESULT CALLBACK pattern also incurs the liability that
client code, namely the code doing the original asynchronous invoca-
tion, and the code associated with the RESULT CALLBACK, is executed in

multiple thread contexts concurrently. The client code therefore needs
to be prepared for that, for example when accessing resources. There
needs to be a separate thread or process handling asynchronous replies
- this also is true for POLL OBJECTS.

The callback itself can either be implemented inside the client only; i.e.
the client executes an ordinary synchronous invocation on a REMOTE
OBJECT in a separate thread. When the invocation returns, the clients
calls back into the provided callback object. Alternatively, a “real” call-
back from the distributed object framework in the SERVER APPLICATION
can be used. This requires that the client makes the callback object
available as a REMOTE OBJECT for the server-side distributed object
framework to invoke. Note that in both cases the implementation of the
target REMOTE OBJECT is not affected.

In network configurations where a firewall exists between client and
server, callback invocations using a new connection for the callback are
problematic, as they might get blocked by the firewall. There are two
options to solve this problem:

* Use bidirectional connections that allow requests to flow in both
directions.

* Let the callback object internally poll the REMOTE OBJECT whether
the result is available.

As the second option is fairly complex, the first option should be
considered in practice.

The major difference between POLL OBJECT and RESULT CALLBACK is that
RESULT CALLBACK requires an event-driven design, whereas POLL
OBJECT allows to keep an almost synchronous execution model.

Related Patterns

An REMOTE OBJECT is very similar to an active object in [SSRBOO]. An
active object [SSRB00] decouples method invocation from method
execution. The same holds true for REMOTE OBJECTS that use any of the
above presented patterns for asynchronous communication. However,
when REMOTE OBJECTS are invoked synchronously the invocation and
execution of a method is not decoupled, even though they run in sepa-
rate threads of control.

Active objects typically create future objects that clients use to retrieve
the result from the method execution. The implementation of such
future objects follows the same patterns are presented in RESULT CALL-
BACK and POLL OBJECT.

In the case of a result callback, an asynchronous completion token
[SSRB00] can be used to allow clients to identify different results of
asynchronous invocations to the same REMOTE OBJECT.

Know Uses Examples

For a long time CORBA [OMGO00] supported only synchronous
communication and unreliable one-ways operations, which were not
really an alternative due to the lack of reliability and potential blocking
behavior. Since the CORBA Messaging specification appeared, CORBA
supports reliable one-ways. With various policies the one-ways can be
made more reliable so that the patterns FIRE AND FORGET as well as SYNC
WITH SERVER, offering more reliability, are supported. The RESULT CALL-
BACK and POLL OBJECT patterns are supported by the Asynchronous
Method Invocations (AMI) with their callback and polling model, also
defined in the CORBA Messaging specification.

NET [Mic03] provides an API for asynchronous remote communica-
tion. Similar to our approach, executing code in a separate thread on
the client side. POLL OBJECTS are supported by the 1asyncResult inter-
face. One can either ask whether the result is already available or block on
the poll object. RESULT CALLBACKS are also implemented with this inter-
face. An invocation has to provide a reference to a callback
operation..NET uses one-way operations to implement FIRE AND
FORGET. SYNC WITH SERVER is not provided out-of-box.

There are various messaging protocols that are used to provide asyn-
chrony for web services on the protocol level, including JAXM, JMS,
and Reliable HTTP (HTTPR). These messaging protocols do not
provide a protocol-independent interface to client-side asynchrony and
require developers to use the messaging communication paradigm.
The patterns presented in this paper can be used to provided asychrony
for the sychnronous web service protocols as well.

Acknowledgements

Thanks to Angelo Corsaro, our EuroPLoP 2003 shepherd, for his
helpful comments, as well as to all the participants of the EuroPLoP
writer’s workshop.

References

[BMR~+96]

[GHJV95]

[Mic03]

[OMG03]

[SSRBOO]

[VKZ04]

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad
and M. Stal, Pattern-Oriented Software Architecture: A
System of Patterns, John Wiley and Sons, 1996.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

Microsoft. .NET framework. http:///
msdn.microsoft.com/netframework, 2003.

Object Management Group (OMG). Common request
broker architecture (CORBA). http://www.omg.org/
corba, 2003.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Patterns for Concurrent and Distributed Objects. Pattern-

Oriented Software Architecture. John Wiley and Sons,
2000.

M. Voelter, M. Kircher, and U. Zdun. Remoting Patterns
- Patterns for Enterprise, Realtime and Internet Middleware,
Wiley & Sons, to be published in 2004

