Applying Reflective Middleware Techniques to Optimize
a QoS-enabled CORBA Component Model Implementation

Nanbor Wang Michael Kircher Douglas C. Schmidt
Kirthika Parameswaran
{nanbor kirthikd @cs.wustl.edu Michael.Kircher@mchp.siemens.de schmidt@uci.edu

Dept. of Computer Science Siemens ZT Dept. of Electrical
and Computer Engineering
Washington University Munich University of California
One Brookings Drive Germany 616E Engineering Tower
St. Louis, MO 63130 Irvine, CA 92697

This paper was submitted to the COMPSAC 2000 conf@rotocols, and services defined by distributed object comput-
ence, Taipei, Taiwan, October 25-27, 2000. ing (DOC) middleware, such as CORBA [1] or Java RMI [2].
DOC middleware that allows clients to invoke operations
Abstract on remote objects without concern for where the object re-

sides [3]. In addition, DOC middleware shields applications

Although existing CORBA specifications, such as Real-tiffi@n non-portable details related to the OS/hardware platform
CORBA and CORBA Messaging, address many end-to-81y run on and the communication protocols and networks
quality-of-service (QoS) aspects, they do not define stratiged to interconnect distributed objects.

gies for configuring these QoS aspects into applications flexinext-generation applications require DOC middleware that
bly, transparently, and adaptively. Therefore, application dgs adaptive and configurable, as well as efficient, predictable,
velopers must make these configuration decisions manugly scalable. For instance, the demand for embedded multi-
and explicitly, which is tedious, error-prone, and often subnedia applications is growing rapidly and hand-held devices,
optimal. Although the recently adopted CORBA Componggh as PIMs, Web-phones, Web-TVs, and Palm comput-
Model (CCM) does define a standard configuration framgrs, running multimedia applications, such as MIME-enabled
work for packaging and deploying software components, Cfinail and Web browsing, are becoming ubiquitous [4]. Ide-
ventional CCM implementations focus on functionality rathg"y, these embedded multimedia applications shoulddre
than adaptive quality-of-service, which makes them unsuitafifired automaticallysing standard DOC middleware com-
for next-generation applications with demanding QoS requifgonents, rather thaprogrammed manuallyfrom scratch.
ments. Meeting the QoS demands of next-generation applications re-
This paper presents three contributions to the study of mighires the resolution of many research challenges, however,
dleware for QoS-enabled component-based applications.s\lich as adapting to frequent bandwidth changes and disrup-
outlines reflective middleware techniques designed to ad@Bns in the established connections, maintaining cache consis-
tively (1) select optimal communication mechanisms, (2) Magncy, and addressing various restrictions on memory footprint
age QoS aspects of CORBA components in their containg[ge and power consumption [5].
and (3) (re)configure selected component executors dynamiDOC middleware based on CORBA should be well-suited

cally. Based on our ongoing research on CORBA and the . o .
. o2 . : provide the core communication middleware for the next-
CCM, we believe the application of reflective techniques to . - o : :
eneration distributed applications outlined above. For in-

component mlddleware will provide a dynamically adaptl\g‘?ance, recent additions to the CORBA specification, such as
and (rg)conﬂgurable framework for COTS soﬁwgre that. Beal-time CORBA [6] and CORBA Messaging [7], address
v_veII—sur[ed for the QoS demands of next-generation apph%%ny end-to-end quality-of-service (QoS) aspec£s. These
tions. specifications standardize interfaces and policies for defining

and controlling various types of application QoS aspects.

1 Introduction Historically, however, the standard CORBA specification
has not addressed component implementation or configura-

Emerging trends and challenges: Distributed applications tion issues effectively. For example, the CORBA 2.x [1]

are increasingly being developed via the standard interfacgsecification did not standardize interfaces to (1) initialize

and deploy services dynamically or (2) enable different sesntrol hardware/software system resources based on mount-
vice implementations to interact portably with each other viiag R&D experience with distributed applications and sys-
standard interfaces. Moreover, many “cross-cutting” [8] seems [21]. Reflective middleware techniques enable dynamic
vice implementation aspects, such as memory and bandwitlianges in application behavior by adapting core software and
management, concurrency, dependability, security, and polwardware mechanisms both with or without the knowledge of
management, are tightly coupled into the application strapplications or end-users [22]. Figure 1 illustrates the key ar-
ture and behavior of CORBA servants. As a result, prohitectural focal points where we are applying reflective mid-
gramming applications directly using standard CORBA 2.x
APIs has often yielded (1) brittle servant implementations that
are hard to optimize, maintain, and enhance and (2) overl
static or non-standardized mechanisms for bootstrapping an
(re)configuring ORB components and services [9].

To address these problems, therefore, the OMG adopted th
CORBA Component Model (CCM) specification [10]. The
CCM defines a framework for generating distributed server@
into which developer can configure custom component logic STUBS
In theory, the adoption of the CCM should reduce the effort
required to integrate portable components that implement ser-
vices and applications. Moreover, the CCM should simplify
the reconfiguration and replacement of existing applicatio :|§

services by standardizing interconnections among COMpPONEN gu -
and interfaces. OS KERNEL 0S KERNEL

In practice, however, the CCM standard and implementa SUBSYSTEM

SUBSYSTEM
tions are as immature today as the underlying CORBA stan
. NETWORK INTERFACE, NETWORK INTERFACE,
dard and ORBs were three to four years ago. For instance;

CCM implementations are not yet particularly efficient, pre-

CLIENT

_____ COMPONENT
out args + return value [[IMPLEMENTATION

o—
(3
IDL
SKELETON

REAL-TIME POA (REAL-TIME ’

(PORTABLE OBJECT ADAPTER

(" SINIAT
‘ALRNDES)
SADIAYAS VEIOD

SMOVATIVD

ORB QoS
INTERFACE

. . 1) COLLOCATION STUBS 5) COMPONENT QOS
dictable, or scalable. Moreover, commercial CCM vendors are Zj COLLOCATION XPORT)ADAPTATIONQ

largely targeting the requirements of e-commerce, workflow, ¢grecrion 6) DYNAMIC LINKING OF

report generation, and other general-purpose business appli- 3) su4rRED MEMORY COMPONENT SERVANTS
cations. The middleware requirements of these applications XPORT 7) DYNAMIC CONFIGURATION OF
focus on functionality and interoperability, however, with lit- %) ORBLEVEL Q0s COMPONENTS

tle emphasis on assurance of, or control over, mission-critical ~ NTERFACE 8) INTEGRATION OF SERVICES

QoS aspects, such as timeliness, precision, dependability, min-))]

imal footprint, and power consumption [11]. As a result, ﬁlgure 1: Focal Points of Reflective Techniques for CORBA
is not feasible to use contemporary off-the-shelf CCM imyliddleware

plementations for applications with demanding QoS requi

ments Fieware techniques to improve the configurability and adaptiv-

ity of QoS-enabled CCM implementations. In this paper, we

Solution approach—s reflective middleware: Our prior re- illgstratg how reflective mi(_jr:ileware techniq.ues are being ap-
search on CORBA middleware has explored many efficienolé)ed to improve the adaptivity of the following CORBA and
predictability, and scalability aspects of ORB endsystem CM mechanisms.
sign, including static [12] and dynamic [13] scheduling, evente Selecting optimal communication mechanisms: To
processing [14], I/O subsystem [15] and pluggable proteresent a homogeneous programming model for application
col [16] integration, synchronous [17] and asynchronous [1#dvelopers, CORBA hides the location of objects from client
ORB Core architectures, systematic benchmarking of multiglgplications. By examining an object’s location reflectively,
ORBs [19], and optimization principle patterns for ORB pehowever, a CORBA ORB can select an optimal communica-
formance [20]. This paper focuses on another key dimenstish mechanism automatically whenkindsan object refer-
in the ORB endsystem design spaeeplying reflective mid- ence [23]. To avoid violating the CORBA object model, how-
dleware techniques to implement QoS-enabled versions ofdher, this selection must occur without direct application in-
CCM. tervention so that middleware performance and predictability

Reflective middleware is a term that describes a loosely oan be optimized transparently. In particular, robust and au-
ganized collection of technologies designed to manage aochated ORB collocation support [20] is necessary since the

CCM encourages complex, dynamically changing object cosome of our efforts to date; Section 5 compares our approach
position relationships [24]. with related work; and Section 6 presents concluding remarks.

¢ Managing QoS aspects of components in their con-
tan_wers. In the CCM, acontalnermanag(_es t_he_lmpleme_n~2 Overview of the CORBA Component
tation of a component by encapsulating it within a run-time o)
environment that provides certain services, such as security, Model SpeC|f|cat|on
event notification, and transactions. In addition, CCM contain-
ers should be extended to manage component implementafibis section presents an overview of the CORBA Component
QoS aspects, such as memory and bandwidth managemdantiel (CCM) architecture, focusing on how entities in CCM
concurrency, dependability, security, and power managemeelate to reflective techniques. For complete coverage, please
Such extensions would allow ORB endsystems to support dge [10].

namic QoS configuration since they could inspect and adjggmponents: A component is a basic CORBfeta-type
a component's QoS aspects via its container. By factoring, it can be referenced by multiple object references of dif-
QoS adaptation policies and mechanisms into containers, C@&ant types. Each component has a sesugported inter-
ponents developers can defer the selection of a componegicgsthat it inherits from IDL interfaces or another compo-
QoS requirements until run-time, thereby enhancing compgnt. These interfaces, collectively called the component's
nent flexibility and adaptability. supported interfaces, define the component's equivalent inter-
« Dynamically (re)configuring selected parts of compo- fg_ce. A component encapsulates a“design entity and is iEjen—
nent implementations: Next-generation applications willlified by acomponent referenceFor “component-unaware
increasingly run in wireless and mobile network configur&!i€nts; componentreferences behave identically to regular ob-
tions where there may be reo priori knowledge of (1) the ject referencesi,e., clients can invoke operations defined in

appropriate implementation of service components, (2) the SgPPorted interfaces. As shown in Figure 2, components in-
timal partitioning of service components onto network nodes

and (3) Activation of components need to occur in redlemponent reference Component
time which means that the initialization process should ri§tpported interface) -
be a bottleneck. Thus, on-demand linking/unlinking mecha-
nisms are necessary to (re)configure component implementa-
tions dynamically. The lifecycle for linking/unlinking of these O—— <.
components must be optimized using reflective middleware oO—1— <
techniques to minimize footprint, prolong battery life, maxi- facets ':.ﬁf::{que;ememﬁons
mize extensibility, and meet key application QoS requirements O—— S
more adaptively. oO—1— 2
| —

We are applying these reflective middleware techniques at
various levels, ranging from the ORB Core up to CORBA
Component Model services. The vehicle for this research is
TAO [12], which is an open-souréeCORBA-compliant ORB teract with external entities, such as services provided by the
designed to support applications with demanding QoS requiRiRB or other components, via the followipgrt mechanism:
ments. Figure 1 illustrates how CORBA components, featuress Facets: A facet also called grovided interfaceis an
and services are being integrated into the TAO ORB endsyferface contract exposed by a component. Facets are simi-
tem. lar to componeninterfacesin Microsoft's Component Object
Paper organization: The remainder of this paper is orgaMOdel (CO.M) [25], in that they a[lowa component to support

. } . . nrelated interfaces Unrelated interfaces exposed through
nized as follows: Section 2 outlines the key features of the . .
acets need not be related through inheritance to the compo-

CORBA Component Model (CCM); Section 3 (1) motivates ", .
nent's supported interfaces.

key challenges faced when designing CCM implementation . . .

to support QoS-enabled applications and (2) outlines the res-rhe CCM's component _model _allows chent_s tavigate

flective middleware techniques we are applying to addr ong facets and the equivalent mterface defined by a com-

these challenges; Section 4 describes empirical results ﬁ%%lent. In contrast, .regular CORBA Obj.eCtS c_)nly allow clients
to traverse related interfaces through inheritance. Although

IThe source code and documentation for TAO can be downloaded f Clients that use components need not be component-aware,

wwy, ¢s. wust | . edu/ ~schmi dt/ TAO ht i . only component-aware clients can use the CCM navigation

mechanism to traverse the interfaces offered by a component.

3

Figure 2: The Architecture of a CCM Component

e Component home: The CCM specification introduceshat allow component developers to add custom component-
a new keywordhome, which support€omponent homesA specific logic. Executors can be packaged in dynamically
component home provides factory method [26] for a compoiked libraries (DLL)s and installed in the container of
nent, which are responsible for creating or finding instancesomponent servethat support a particular target plat-
of components. Each component home manages exactly foms/language.
type of component. Home interfaces can optionally uk€ya ¢y nainers: The CCM container programming model de-
to manage instances of the managed component. Each¢ev o set of APIs that simplify the task of developing and/or
maps to an instance of the component. Conversely, l@ya ., niguring CORBA applications. A container encapsulates a
lesshome interface, invoking the factory method simply Creqmnonent implementation and uses these APIs to provide a
ates a new instance of the managed component type. run-time environment for the component that it manages. Fig-
Component Implementation Framework (CIF): The ure 5 on page 7 shows the architecture of the container pro-
CORBA Component Implementation Framewo{®IF) de- gramming model.
fines the programming model for managing the persistenEach container manages one component implementation
states of components and constructing component implemgsfined by the CIF. A container creates its own POA for all the
tations. The CCM specification defines a declarative languaigeerfaces it manages. These interfaces can be decomposed as
the Component Implementation Definition Langud&@¢DL), follows:
to describe implementations and persistent states of compo;

- External APIs: These are the interfaces defined by the
nents and component homes. As shown in Figure 3, the

ct\fgzmponent including thequivalent interfacefacets and the
componenthomeinterface. External APIs are available to

CIDL IDL clients.
FILES FILES

e Container APIs: These include thinternal interfaces
that the component can invoke to access to the services pro-

L tortace Component- vi(_jed by th_e container and ticallback interfaceshat the con-
Compile™ | Repository [~ | L’\(“:'g:—‘gler tainer can invoke on the component.
Through the collaboration of these interfaces, a container pro-
l / \ vides its managed component access to its POA and the ser-
|m%?gqp§,?t§ﬂg | sE&;Vt?InS %?SE; vices supported by the ORB.
Skeletons CCM containers also manage the lifetime of component ser-
\ / vants. Four types of servant lifetime policiesnethod ses-
F— ot ol Cient ;ion compongnt@ndcontainer— control the timing of actiygt—
In;,g)lﬁpggré%t(i{ér"c,gmp”er Compile®™ | Code ing and passivating componenM«_ethodand session policies
causesser vant Locat or sto activate and passivate compo-
nent on every method invocation/session, wheoemsponent
and containerpolicies defer the servant lifetime policies to
Component Client components and containers, respectively.
(DLPL'O(?ZTE) Program There are two types of container interfaces:g@dgsiorcon-
: tainer interfaces for transient components andef®)jty con-

tainer interfaces for persistent components. T@RBA Us-
Figure 3: Using IDL and CIDL for componentimplementatioage Modelspecifies the required interaction pattern between

a container, its POA, and CORBA Services (such as Notifi-
uses the CIDL descriptions to generate programming sketation or Transaction) by specifying the interfaces’ transient-
tons that automate basic behaviors of components, suchess/persistency and cardinality of serva@ID mapping.
navigation, identity inquiries, activation, state management,The component categorylefines the legal combinations
transactions, and security. Many of these standard interfacgshe container API types and the CORBA usage models.
e.g, navigation, identity inquiries, and activation, provide thBy specifying a container's component category along with
ways tointrospectcomponents and the mechanism for CCMther policies, component developers can specify a wide range
to be implemented reflectively. of configuration options in the CIF. The CIF then gener-

Implementations generated by a CIDL compiler are callates the component implementation with proper strategies for

executors Executors contain the aforementioned aut®oS aspects, such as persistence, event notification, transac-
generated implementations and provide hook methods [#6h, security. Thus, when combined with OMG’s Real-time

CORBA [27] and Messaging [7] specifications, CCM coninnecessary communication overhead, however, when an ob-
tainers provide application developers with a model for crect resides within the same host or the same address space as
ating, specifying, and partitioning various run-time QoS athe client. Thus, quality ORBs must determine the actual loca-
pects, such as end-to-end priority and connection bandwititin of a target object to optimize performance, while shielding
utilization, for components in real-time systems. developers from these details to simplify programming.
Packaging and Deployment: The CCM defines standard As shown in [29], an ORB can improve performance sub-
technigues and patterns for packaging and deploying comg@ntially by determining the location of target objects and then
nents. The CCM uses th@pen Software DescriptiofDSD), invoking operations using the most efficient communication
which is an XML Document Type Definition (DTD) definednechanism. For example, when invoking an operation on a
by W3C to describe software packages and their dependend@get component collocated on the same host, an ORB should
The CCM OSD feature is useful for certain real-time applicehoose a communication mechanism, such as shared memory,
tions that require dynamic configuration or off-site softwatbat is more efficient than “loopback” TCP/IP. This selection
maintenance, such as upgrading software packages on-bpepdess is called the “collocation optimization.”
space vehicles in-flight. It is important, however, that collocation optimizations be
ORB extension—s locality constrainted interfaces: His- implemented in a “QoS-enabled” manner. In another words,
torically, locality-constrained interfaces have been linapplying collocation optimizations should not interfere with
ited to ORB-defined types, such aSORBA: : NVLi st, QoS mechanisms provided by the underlying ORB endsys-
CORBA: : Request, and CORBA: : TypeCode, and were tem. For instance, two real-time ORB endsystem mecha-
often defined using so-called pseudo-IDL (PIDL) [28]. Toisms defined by the Real-time CORBA specificationgie
support the component model efficiently, and to eliminatgitized schedulingand QoS-enabled communication chan-
the need for PIDL, the CCM specifies a new IDL keywordels[27]. Prioritized scheduling ensures that applications re-
called| ocal , which standardizes the definition tfcality quiring QoS support receive enough resources to meet their
constrainednterfaces. deadlines. QoS-enabled communication channels ensure the
As its name implies, a local interface is only valid in th®RB endsystem’s communication infrastructure allocates suf-
process in which it is instantiated. Thus, it cannot be extéicient bandwidth, CPU, and memory resources to satisfy ap-
nalized to or invoked from other processes. Adding standaliation QoS requirements end-to-end.

support for locality constrained interfaces to CORBA is P85 ution — Reflective selection of optimal communication

ticular!y important for server-centr.ic. cpmponents becau_serﬂgchanisms: To select an optimal communication mecha-
helps improve performance and minimize memory footprlnli,]ism, an ORB must apply collocation optimizatiorelec-

tively at run-time. In general, these optimizations must be in-
3 Applying Reflective Middleware visible to ORB users to avoid violating COR_’BAS obJec_t model_

. . transparency. Moreover, although certain collocation opti-
Technlques to Resolve Key Design mization mechanisms (such as direct function calls or shared
Challenges for QoS-enabIed CCM m_emory) may befaster than other communlcatlon mecha-

) nisms (such as TCP loopback or message queuing), a QoS-
Implementations enabled ORB must select a communication mechanism based
_ _ _ on their client/object QoS requirements. For example, to avoid
This section describes the key research challenges thalirring priority inversion, a reflective QoS-enabled collo-
CCM developers must address to support QoS-enabled apgition optimization mechanism could establish multiple con-
cations and outlines the reflective middleware techniques & tions to partition ORB communication between client and
are applying to address these challenges. server threads with different QoS requirements.

3.1 Challenge 1: Achieving QoS-enabled Loca- When object migration occurs, an ORB must re-select the
tion Transparency Adaptively optimal communication mechanism. To support migration,
an operation invocation will receive l@>CATION_FORWARD

Context: Location transparency is an important feature afiessage and a new object reference will be examined. As
the CORBA programming model. It allows applications taith the original binding, the ORB should determine the ap-
invoke operations via well-defined interfaces, without havingopriate communication mechanism reflectively, taking into
to be concerned with where the target components reside. account the QoS characteristics of the various clients and ob-

Problem: A straightforward strategy for implementing Io—JeCts involved in the migration.

cation transparency is to treat all operations as remote invo&pplying reflective collocation mechanisms in TAO: Fig-
tions that are sent via IIOP over TCP/IP. This strategy imposee 4 illustrates how TAO is designed to support reflective col-

IN ARGS

T, opefation (@rds) | T s of functionality provided by components. For example, a

o S e multimedia application running on an OS that provides zero-
copy buffer optimizations [32] may need to interact with many

COLLOCATION POLICY CONTROL . h
g ORB MESSAGING COMPO OS mechanisms to acquire/release buffers, control flow rate,
§ siop sor | @ cor Giopure || e e pace the flow, and reserve bandwidth. Moreover, program-
s ol E o ming these complex QoS aspects manually tends to tightly
3 % o S DYNAMICALLY . .
S l E l l i 7 (Il corouvac couple components to particular OS QoS mechanisms [22],
£ o uNiX SHARED 1op ||oveermen| [OR8 remsseorr which yields sub-optimal performance when applications must
< SOCKETS Mfyc?RRTY ATM ADAPTER FACTORY . - -) .
3 switch adaptively among different QoS mechanisms on differ-
£ ORE TRANSRORT ADAPTER COMPO ent OS platforms and networks.
ADAPTIVE Communication Environment (ACE) | . ﬂ . f
-
COMMUNICATION INFRASTRUGTURE ST E TR Solution — Reflective management of component QoS as

: : . - =¥ pects by their containers: QoS-enabled CCM implementa-
Figure 4: Reflective Selection of Optimal Communicatiofhns must be designed to extract QoS aspects from their com-
Mechanisms in TAO ponents andveavethese aspects together through dynamic
configuration and composition. For instance, as described in
gfction 2, each CCM container uses a dedicated POA to man-
age the interfaces supported by its managed component. Thus,

TION_FORWARD message. If the object is local to the proces2ntainers, not application programmers, should be responsi-
TAO also considers the QoS policies associated with the obji fOr configuring QoS aspects of components reflectively,
to guide its selection of an appropriate communication me(l,:l‘_'f‘-_sed on criteria such as priorities, deadlines, or network con-
anism, which may not necessarily be the “fastest” mechanigions such as congestion.

For instance, connections and threads are often used 3 containeris an ideal entity to manage a component's QoS
differentiate QoS requirement levels and execution priof9/Icies because (1) POAs are the key policy designators in

ties [27]. To minimize priority inversion, however, TAO avoigQ°th the Real-time CORBA and CORBA Messaging specifica-
multiplexing connections with traffic that possesses differdS and (2) the component model encourages composition of
QoS requirements [17]. Thus, via reflection, TAO may dgnrelated_objects [24]. Therefore, a_contamer pr.owde.s a cen-
cide to use a less efficient, but more predictable, collocati%i"\I repository that allows unrelated implementation objects to

mechanism after examining the effective policies of an Objé?allaborate Without explicit prior knowledge of their existence
reference. or QoS properties.

location mechanisms. TAO determines an object’s locati
when it bindsan object reference [23] or receives.aca-

Applying container-based QoS adaptivity in TAO: Fig-

ure 5 illustrates the design of TAO’s CCM container model.
To isolate the QoS properties of a component into its man-
aging container, TAO’s CCM implementation is designed to

Context: Next-generation applications require greater QG§OW @ component's Q0S properties to be configured by its
support from their middleware. In CORBA-based middlewar/gontainer reflectively. For example, QoS reflection mecha-
this QoS support is provided by ORB endsystems [12]. FgsMS can allow a component to specify or monitor its QoS
instance, the OMG defines the Real-time CORBA [27] afgduirements and provide feedback on the performance status
CORBA Messaging [7] specifications to standardize how éH_the component to its managing container. In addition, the

plications interact with the QoS and real-time mechanisms tH&P!0yment information in component descriptors can be ex-
0S's provide. tended to deploy components using containers with different

QoS properties. For example, assume a logging service com-
Problem: Even with the adoption of Real-time CORBA angonent must forward large amount of data to a central logging
CORBA Messaging, component developers still must prograepository in a timely manner. With a container implementa-
applications manually to utilize the real-time or messaging a¢&n that supports QoS adaptation, developers can deploy the
pabilities of an ORB. Unfortunately, this manual process is teriginal component with this container and specify the QoS
dious, error-prone, and often sub-optimal because applicatiequirements to enhance the timeliness of the component.
developers must explicitly program end-to-end [30] QoS fac-By decoupling component implementations from the QoS
tors, such as service levad.¢J, deterministic, predictive, vs. configuration mechanisms defined by containers, TAO allows
best-effort) and flow specifications [31]. QoS-unaware components to be reused with various QoS

One reason that programming sophisticated QoS suppdperties in different applications without modifying their

manually is hard is because it cuts across [8] many aspéctplementations. Moreover, it is easier to monitor and con-

3.2 Challenge 2: Changing Component QoS
Properties Adaptively

Cottac Stk Problem: Although the number of components configured

! into a component server may be large, not all installed compo-

Tio come o=t 20| comn loo nents will be used simultaneously. Care must be taken when
51| o<1 &5, Mot a container chooses its DLL linking/unlinking strategy since
] Internal keeping unused DLLs linked into an application for extended
i Interfaces
i u imi u . icu
eriods can consume limited system resources, particularl
memory. Conversely, linking and unlinking DLLs upon ev-
-QOS I/ -POA d . .
o ery method invocation not only degrades system performance,
ontainer

0 0 0 0 Container but can also consume other system resources, such as battery
power in mobile devices.

ORB
Solution — Reflective linking/unlinking of component ex-

ecutors: To address the problems mentioned above, compo-
nent servers should reflectively manage the lifetimes of their
executor DLLs. The following two patterns — Component
Configurator [33] and Evictor [3] — can help to guide this pro-
Security Notification cess:

Transactions Persistent

Figure 5: Managing Component QoS Properties via Conta&]gnf?omponent Configurator patt(_ern. The C_omponent_
ers gura_tor pattern decouples the |mplem§ntat|on of services
from the time when they are configured. This pattern supports
various (re)configuration strategies that component servers can
trol the dynamic behavior of an implementation with differemtse to link/unlink the DLL containing component executors
QoS configurations. implementations on-demand. For example, during the initial
component configuration phase, a component server can use
the Component Configurator pattern to (1) dynamically link
3.3 Challenge 3: Changing Component Behav-its executors from DLLs that contain these components and
ior and Resource Usage Adaptively (2) set up the interconnections specified by the components’
assembly descriptors. On the other hand, component config-
Context: = As discussed in Section 2, component implemegrator can also unlink then re-link component executors dy-

tations in the CCM are cattxecutorsand are packaged intonamically when an updated implementation is available
dynamic-linked libraries (DLL). The use of DLLs enables the

installation of components on genedomponent serversA * Evictor pattern: The Evictor pattern describes a gen-

component server may serve a large number of componeﬁ'i@! strategy for limiting memory consumptlon._ This pattgrn
some of which will be used frequently and others less figdn be used by component servers to reflectively passivate
quently component executors that are used infrequently and unlink

In general, developers of next-generation component-bag]eedr DLLs. For instance, a component that generates authen-

sppications may not kone prion the most efecive (1" C21ICAS iy be s nly i e begnning of
strategies for (1) implementing components or (2) colloc ' 9 ' '

ing/distributing multiple component executors into process g retained during the remaining secure session.
and hosts. If developers commit prematurely to a particularBoth the Component Configurator and Evictor patterns
configuration of components, however, this can impede fleskould be guided by policies and environmental conditions.
ibility, reduce overall system performance and functionalityor example, the Component Configurator pattern can be used
and unnecessarily increase resource utilization. Often, init@reconfigure component implementations based on informa-
component configuration decisions may prove to be subopittn available in CCM component descriptors, such as apply-
mal over timeg.g, platform upgrades or increased workloadag conponent f eat ur es. Conponent f eat ur es is an
may require the redistribution of certain components to oth&¥IL entity in component descriptor that describes a compo-
processes and hosts. nent’s capabilities and operation policies. Likewise, eviction
Therefore, it is may be necessary to make component cpalicies should reflect common usage patterns based on pe-
figuration or implementation decisions as late as possibleribdic ORB endsystem monitoring mechanisms or resource
an application’s development or deployment cycle. Moreoveranagement strategies.

for applications with high availability requirements, it may bﬁpplying dynamic (re)configuration in TAO: TAO's

necessary to perform component updates onliegwithout - -\ implementation supports the following features that en-
having to modify or shut down an application obtrusively.

able dynamic (re)configuration of component executors. tor uses to swap component executors dynamically.

e On-demand linking: On-demand linking of compo- e Eviction: TAO’s CCM implementation defines a usage
nent interface implementations is achieved in TAO via a comuery interface that returns certain usage information, such
bination of the Component Configurator pattern [33], tt&s frequency of use and time of last use, of executors. In-
ACE Service Configurator framework [34] that implementernally, TAO’'s CCM implementation uses awictor mecha-
this pattern, and standard CORB&r vant Manager s[35]. nism, which queries components’ usage interfaces and applies
The ACE Service Configurator framework dynamically linksviction policies to determine whether to passivate a com-
and unlinks component executors stored in DLLs. Twapnent executor and unlink its DLL. In addition, component
types of Servant Manager are supported by a POA:descriptors can be extended to include eviction strategies or
(1) Servant Acti vat or s, which activate/deactivate serto predefine component usage patterns that provide hints to
vants in a POAs active object map on-demand and (PAO's CCM evictor mechanism. The activation of TAO’s
Ser vant Locat or s, which are designed to implement useevictor mechanism can be controlled by policies selected by
defined object demultiplexing and servant lifetime managingmponent server developers. Eviction can then be triggered
mechanisms on a per-invocation basis. either periodically or by monitoring system resources, such as

TAO’s CCM framework enhances containers to providePU load or memory usage.
their own Ser vant Locat or s that link in the necessary

component executors from DLLs on-demand, as shown in ..
Figure 6. The same mechanism also detects the availaflil- Current Progress and Empirical Re-

sults
DLL - In this section, we report the resultg of our ongoing effor_ts to
[_smareor2 | enhance TAO to support the reflective middleware techniques
described in Section 3.

L § 1
DLL b Current Progress: We have added a QoS adaptation layer
|, Lomeee that shields TAO from differences among the QoS interfaces
i ‘ on different OS platforms. Key features in this adaptation
layer include (1) support for prioritized scheduling by par-
[SERVANT MANAGER titioning requests for different QoS requirement into differ-
i : ent threads and servicing these threads through different end-
OBJECT ID \.\ points, (2) support for initializing endpoint QoS properties,
8] (sErva M roLICY) such as bandwidth reservation and flow pacing, and (3) sup-
port for portable scheduling control. These mechanisms are
ACTIVE OBJECT MAP then used to implement the QoS-aware containers described
in Section 3.1.
. We have implemented a container prototype that supports
p y :] the on-demand linking and eviction of component executors

CONTAINER

described in Section 3.3. We are in the process of strategiz-
ing the eviction mechanism and will eventually integrate with
Figure 6: Dynamic Linking/Unlinking of Component Parts vigAO s CCM component usage reflection _support. .
TAO supports two co-process collocation mechanisms [29]
Ser vant Manager L : L
and several other co-host optimization mechanisms via its

. . . . upluggable protocols framework [16]. Currently, however, TAO
ity of new component implementations and switches to use . . .
these updated versions automatically. For instance TA(gnIy allows the reflective selection of co-process collocation
: ', optimizations, though we are adding a more comprehensive
Servent Locat or s can detect updated DLLs contalnln?g\g 9 9 P

<

component executors and delegate the actual work to A q%location selection mechanism, outlined in Section 3.1. The

Seeri)ce Configurator o link thesg executors on-demand. T r—.;mainder of this section presents empirical results of perfor-
gurator * 'Mance comparisons of the collocation optimization mecha-

feature helps minimize system resource usage by not link-

) . ..nisms supported by TAO.

ing component executors until they are accessed. In addition,

TAO’s CCM implementation enhances component descriptddeasurement techniques: The following four ORB com-

to provide meta-information that the ACE Service Configurezunication optimization mechanisms were measured in these

1000000

process-level semaphores on UNIX compared with Windows
NT. Thus, UIOP outperforms actually SHMIOP on Solaris
o machines.
g x s — Our current implementation of SHMIOP in TAO uses the
loopback localhost pseudo-device interface as a signaling
mechanism. Thus, we notify the ORB’s reactive [33] event
loop via a socket on each send operation. We expect the per-
formance of SHMIOP will be enhanced greatly after we im-
plement a multi-threaded version of SHMIOP that uses “zero-
i copy” shared memory buffers. However, the current SHMIOP
op " Shmiop “hnu_poa e implementation is required to support applications that are not
e | = | = wn |G| multithreaded.
B Sun small seq 1088 1207 1247 30195 65467

IO Sun long seq 819 903 926 30183 62520
Collocation Mechanisms

508034

340701
65467
62520

745217

100000

30195 244841

30183

10000

RRES
o

1207
903

1247
926

10004 |-

Thruput (Calls/sec.)

1004 [

10 [

N
§
\
\
\
\
\

L

Figure 7: Buffered One-way Request Throughput for Variols Related Work
TAO Protocols
CORBA is increasingly being adopted as the middleware of
.) ... choice for a wide-range of distributed applications and sys-
experiments: (1) shared-memory transport for optimizing co-

host communication, (2) UNIX domain socket, which is alstgms' Thus, the need to develop highly flexible, config-

L . urable, efficient, predictable, and scalable CORBA applica-
a co-host optimization mechanism, (Bjru_POA co-process .. . s _
; P . tions has motivated research on policies and mechanisms for
collocation optimization [29], and (4pirect co-process col-

. S . : 0S-enabled CCM. The following work on middleware and
location optimization. Compared to invoking a method o S
. C : . omponent technologies is related to our research.
| ocal interface, which is a new interface type in the CCM;

invoking a method using thBirect collocation strategy only pefiective ORBs: Kon and Campbell [21] demonstrate that
incurs one extra virtqal func_tion call. Therefore, it indicategng can pe reconfigured at run-time by dynamically linking
the benefits of declaring an interfacecal . _ in the required modules. Although their research provides a

We measured the performance of TAO's collocation 0pfoof-of-concept for dynamic configurable middleware frame-
mization mechanisms by invoking operations that sent a §gsyk, their research does not explore performance implica-
quence of 4 and 1,024 elements lobngs. Both server jions and optimizations related to component-based middle-
and client ran on the same host to allow us to compare {igre Our proposed research on dynamic configuration will
performance gain of applying each optimization mechanisgyncentrate on reducing memory footprint reflectively for sup-
Thg performance qf lIOP is measured as a baseline for NBBFting component model, without compromising the com-
optimized communication. pleteness and the performance of the model.

H Benchmarking Platf . Th . . - . .
ardware/OS Benchmarking Platforms € tests were uO: The Quality Objects(QuO) distributed object mid-

conducted using a Gateway PC with two 500 Mhz Pentiu . . .
[l CPUs running Microsoft Windows 2000 and an a UItraq eware is developed at BBN Technologies [22] by applying

SPARC with four 300Mhz UltraSparcs running SunOS 5‘%spect-0riented Programming (AoP) [8] techniques to adap-

We compiled the test on NT using Microsoft Visual Studi%;; applications running over wide—a_rea networks. QuO is
with Service Pack 3 and on Solaris using egcs version 2.91. ed on CORBA and supports: (ln-ime performance tun-

but using full optimization. ing’.and configgratiorthrough the specificat_ion of operating.
regions, behavior alternatives, and reconfiguration strategies
Results: Figure 7 shows the performance of TAO's collocahat allows the QuO run-time to adaptively trigger reconfigu-
tion optimization mechanisms compared with the IIOP bagetion as system conditions change (represented by transitions
line. Shared-memory transport is labeled as SHMIOP abetween operating regions), (fBedbackacross software and
UNIX domain transport is labeled as UIOP in the figure. Thiistribution boundaries based on a control loop in which client
results in this figure illustrate the importance of configuriregpplications and server objects request levels of service and
an ORB's collocation selection mechanism reflectively to takee notified of changes in service, and ¢8de mobilitythat
advantage of OS platform the ORB runs on. For exampémables QuO to migrate object functionality into local address
on Windows NT, the performance of SHMIOP is around 50%paces in order to tune performance and to further support
faster than that of IOP. However, it it only marginally fastemnighly optimized adaptive reconfiguration. We are currently
(10%) than IIOP on UNIX, due to the higher overhead @bllaborating with the BBN QuO team to integrate the TAO

and QuO middleware as part of the DARPA Quorum integr@ORBA components. Likewise, the Real-time CORBA [6]
tion project. We are planning to apply the lessons learnt in thied CORBA Messaging [7] specifications address many end-
project into the implementation of QoS-enabled containersto-end quality-of-service (QoS) aspects. We believe, however,

COM interceptors: Hunt and Scott [36] described how t&hat thefse sgecm%’:lltlgns WII'” t;.e unsuTabIe(;oRrBan |n|1porta?t
implement interceptors in COM. The concept they used to ir(H‘-’leS N ?0 ern? € 35? ca 'O?S lrj]n_essus t |m[:: e:Een a
plement interceptors is similar to TAO's collocated stub [2 ons applyretiective middieware techniqués automate e

in that both use alternative stubs to masquerade as oper %ﬁctlon and ada}ptat|on of key QO.S aspects. The rgflectlve
iddleware techniques we are focusing upon currently include

targets. While this concept is effective, their work was done”?ls lect timal icati hani 5
the context of COM. Therefore, our research will exploret,% selecting optimal communication mechanisms, (2) manag-

effects of applying these concepts to CCM ing QoS aspects of CORBA components in their containers,
' and (3) (re)configuring selected parts of component executors

JinACE: Part of the work on reflective CCM outlined in thiSjynamica”yl We are applying these techniques to TAO, which
paper originated in the JINACE project. As shown in Figs our platform for implementing, optimizing, and experiment-
ure 8, JINACE is a component-based, standards-teséwc ing with QoS-enabled CCM.

networking platform, design for high performance and small

footprint, opening up new domains fad hocscenarios. It is

based on a set of design patterns, which provide on—demggferences

linking, activation, eviction and lookup of components repfi] Object Management Groufshe Common Object Request Broker:

resenting services. Our research on JinACE was inspired by Architecture and Specificatio2.3 ed., June 1999.

[2] A.Wollrath, R. Riggs, and J. Waldo, “A Distributed Objedodel for
the Java System{JSENIX Computing Systeml. 9,
November/December 1996.

[—:l (D:'A(,\;/: ;é; [3] M. Henning and S. VinoskiAdvanced CORBA Programming With
[—) . C++. Addison-Wesley Longman, 1999.

COMPUTER

SERVICE
(PAGE.COLOR) [4] G. Forman and J. Zahorhan, “The Challenges of Mobile Qating,”
IEEE Computervol. 27, pp. 38-47, April 1994.

[5] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Ryool
Engine for Minimal Footprint Multimedia Systemslburnal on
Selected Areas in Communications special issue on SermiakliEg
Platforms for Networked Multimedia Systemsl. 17, Sept. 1999.

CD PLAYER PRINTER [6] D.C. Schmidt and F. Kuhns, “An Overview of the Real-tim®RBA
Specification,"Submitted to IEEE Computer Magazii2900.

[7] Object Management GrouORBA Messaging SpecificaticdMG
Document orbos/98-05-05 ed., May 1998.

[8] G. Kiczales, “Aspect-Oriented Programming,”mtoceedings of the
11th European Conference on Object-Oriented Programmloge
1997.

[9] N.Wang, D. C. Schmidt, and D. Levine, “Optimizing the CBR
Component Model for High-performance and Real-time Aggians,”
Figure 8: Overview of JINACE in ‘Work-in-Progress’ session at the Middleware 2000 Confege
ACM/IFIP, Apr. 2000.

[10] BEA Systemset al, CORBA Component Model Joint Revised

e - . . SubmissionObject Management Group, OMG Document
Sun’s Jini Technology [37]. By examining Jini's key design c,rbos/gg_m_mJ ed., Ju|y%ggg_ P

features and protocols, we identified a pattern language c@fy c. p. Gill, F. Kuhns, D. L. Levine, D. C. Schmidt, B. S. DogR. E.

isti i - ink- Schantz, and A. K. Atlas, “Applying Adaptive Real-time Middiare
sisting of paiterns for component discovery, on-demand link to Address Grand Challenges of COTS-based Mission-Qritica

ing/unlinking, and dynamic activation/deactivation. One goal Real-Time Systems,” ifroceedings of the 1st IEEE International
of JINACE is to make this pattern language available to middle- Workshop on Real-Time Mission-Critical Systems: Grandi€hge

. . . | h Problems Nov. 1999.
ware standards written in programming languages other t 1 D. C. Schmidt, D. L. Levine, and S. Mungee, “The Desigd an

Java. We are planning to merge JinACE with the TAO’s CC Performance of Real-Time Object Request BrokeEgmputer
implementation components. Comml{nlcatlonsm!. 21, pp. 294-324, Apr. 1998. .
[13] C.D.Gill, D. L. Levine, and D. C. Schmidt, “The Designagn
Performance of a Real-Time CORBA Scheduling Servitag
i International Journal of Time-Critical Computing Systersigecial
6 Conc|ud|ng Remarks issue on Real-Time Middlewar2000.
[14] T.H. Harrison, D. L. Levine, and D. C. Schmidt, “The Dgisiand
e . . Performance of a Real-time CORBA Event Service Pioceedings of
Recent CORBA specifications define better support for Q0S OOPSLA '97 (Atlanta, GA), ACM, October 1997.
and configurability. In particular, the CORBA Compog5] F.Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and

- - . Performance of a Real-time 1/O Subsystem,Pimceedings of thet"
nent Model (CCM) [10] defines standard interfaces, pOlI IEEE Real-Time Technology and Applications Sympos{ifancouver,

cies, and services for structuring, integrating, and deploying British Columbia, Canada), pp. 154-163, IEEE, June 1999.

HANDHELD
DEVICE

10

[16]

[17]

(18]

[29]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]
(28]
[29]

(30]

[31]

[32]

(33]

(34]

(35]

(36]

[37]

C. O'Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. &&s“The
Design and Performance of a Pluggable Protocols Framework f
Real-time Distributed Object Computing Middleware,"Rnoceedings
of the Middleware 2000 Conferenc&CM/IFIP, Apr. 2000.

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Glgkha
“Software Architectures for Reducing Priority Inversiomda
Non-determinism in Real-time Object Request Brokeisyirnal of
Real-time Systems, special issue on Real-time Computihg ige of
the Web and the Interneto appear 2000.

A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, M. Kircher, @n

J. Parsons, “The Design and Performance of a Scalable ORB
Architecture for CORBA Asynchronous Messaging,Hroceedings of
the Middleware 2000 Conferenc&CM/IFIP, Apr. 2000.

A. Gokhale and D. C. Schmidt, “Measuring the Perforneaot
Communication Middleware on High-Speed Networks,Pimceedings
of SIGCOMM '96 (Stanford, CA), pp. 306-317, ACM, August 1996.

I. Pyarali, C. O’'Ryan, D. C. Schmidt, N. Wang, V. Kachremd
A. Gokhale, “Applying Optimization Patterns to the Design o
Real-time ORBs,” irProceedings of the*" Conference on
Object-Oriented Technologies and Syste(8san Diego, CA),
USENIX, May 1999.

F. Kon and R. H. Campbell, “Supporting Automatic Configtion of
Component-Based Distributed Systems,Pimceedings of thgt”
Conference on Object-Oriented Technologies and Sys{&as Diego,
CA), USENIX, May 1999.

J. A. Zinky, D. E. Bakken, and R. Schantz, “Architeciusaipport for
Quality of Service for CORBA ObjectsTheory and Practice of Object
Systemsvol. 3, no. 1, 1997.

M. Henning, “Binding, Migration, and Scalability in GRBA,"
Communications of the ACM special issue on CORBA 41, Oct.
1998.

C. SzyperskiComponent Software — Beyond Object-Oriented
Programming Santa Fe, NM: Addison-Wesley, 1999. CCM related.

D. Box, Essential COM Addison-Wesley, Reading, MA, 1997.

E. Gamma, R. Helm, R. Johnson, and J. Vlissi@Essign Patterns:
Elements of Reusable Object-Oriented Softw&eading, MA:
Addison-Wesley, 1995.

Object Management GrouRealtime CORBA Joint Revised
SubmissionOMG Document orbos/99-02-12 ed., March 1999.

Object Management Group)DL & Pseudo-Objects Policy Paper
OMG Document ab/98-01-02 ed., January 1998.

N. Wang, D. C. Schmidt, and S. Vinoski, “Collocation @pizations
for CORBA,” C++ Report, vol. 11, November/December 1999.

J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-Endunents in
System Design,ACM Transactions on Computer Systems
pp. 277-288, Nov. 1984.

C. Aurrecoechea, A. T. Campbell, and L. Hauw, “A SurvéQoS
Architectures,”ACM/Springer Verlag Multimedia Systems Journal,
Special Issue on QoS Architectux®l. 6, pp. 138—-151, May 1998.

Z.D. Dittia, G. M. Parulkar, and J. R. Cox, Jr., “The APMpproach to
High Performance Network Interface Design: Protected DMA a
Other Techniques,” ifProceedings of INFOCOM '9{Kobe, Japan),
pp. 179-187, IEEE, April 1997.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for €Comency and
Distributed Objects, Volume New York, NY: Wiley & Sons, 2000.

D. C. Schmidt and T. Suda, “An Object-Oriented Framéufor
Dynamically Configuring Extensible Distributed Communica
Systems,1EE/BCS Distributed Systems Engineering Journal (Special
Issue on Configurable Distributed Systepws). 2, pp. 280-293,
December 1994.

D. C. Schmidt and S. Vinoski, “C++ Servant Managers far Portable
Object Adapter,'C++ Report, vol. 10, Sept. 1998.

G. C. Hunt and M. L. Scott, “Intercepting and InstruniegtCOM
Application,” in Proceedings of that” Conference on Object-Oriented
Technologies and SystengSan Diego, CA), USENIX, May 1999.

Sun Microsystems, “Jini Connection Technology.”
http://www.sun.com/jini/index.html, 1999.

11

