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Abstract

Although existing CORBA specifications, such as Real-time
CORBA and CORBA Messaging, address many end-to-end
quality-of-service (QoS) aspects, they do not define strate-
gies for configuring these QoS aspects into applications flexi-
bly, transparently, and adaptively. Therefore, application de-
velopers must make these configuration decisions manually
and explicitly, which is tedious, error-prone, and often sub-
optimal. Although the recently adopted CORBA Component
Model (CCM) does define a standard configuration frame-
work for packaging and deploying software components, con-
ventional CCM implementations focus on functionality rather
than adaptive quality-of-service, which makes them unsuitable
for next-generation applications with demanding QoS require-
ments.

This paper presents three contributions to the study of mid-
dleware for QoS-enabled component-based applications. It
outlines reflective middleware techniques designed to adap-
tively (1) select optimal communication mechanisms, (2) man-
age QoS aspects of CORBA components in their containers,
and (3) (re)configure selected component executors dynami-
cally. Based on our ongoing research on CORBA and the
CCM, we believe the application of reflective techniques to
component middleware will provide a dynamically adaptive
and (re)configurable framework for COTS software that is
well-suited for the QoS demands of next-generation applica-
tions.

1 Introduction

Emerging trends and challenges: Distributed applications
are increasingly being developed via the standard interfaces,

protocols, and services defined by distributed object comput-
ing (DOC) middleware, such as CORBA [1] or Java RMI [2].
DOC middleware that allows clients to invoke operations
on remote objects without concern for where the object re-
sides [3]. In addition, DOC middleware shields applications
from non-portable details related to the OS/hardware platform
they run on and the communication protocols and networks
used to interconnect distributed objects.

Next-generation applications require DOC middleware that
is adaptive and configurable, as well as efficient, predictable,
and scalable. For instance, the demand for embedded multi-
media applications is growing rapidly and hand-held devices,
such as PIMs, Web-phones, Web-TVs, and Palm comput-
ers, running multimedia applications, such as MIME-enabled
email and Web browsing, are becoming ubiquitous [4]. Ide-
ally, these embedded multimedia applications should becon-
figured automaticallyusing standard DOC middleware com-
ponents, rather thanprogrammed manuallyfrom scratch.
Meeting the QoS demands of next-generation applications re-
quires the resolution of many research challenges, however,
such as adapting to frequent bandwidth changes and disrup-
tions in the established connections, maintaining cache consis-
tency, and addressing various restrictions on memory footprint
size and power consumption [5].

DOC middleware based on CORBA should be well-suited
to provide the core communication middleware for the next-
generation distributed applications outlined above. For in-
stance, recent additions to the CORBA specification, such as
Real-time CORBA [6] and CORBA Messaging [7], address
many end-to-end quality-of-service (QoS) aspects. These
specifications standardize interfaces and policies for defining
and controlling various types of application QoS aspects.

Historically, however, the standard CORBA specification
has not addressed component implementation or configura-
tion issues effectively. For example, the CORBA 2.x [1]
specification did not standardize interfaces to (1) initialize
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and deploy services dynamically or (2) enable different ser-
vice implementations to interact portably with each other via
standard interfaces. Moreover, many “cross-cutting” [8] ser-
vice implementation aspects, such as memory and bandwidth
management, concurrency, dependability, security, and power
management, are tightly coupled into the application struc-
ture and behavior of CORBA servants. As a result, pro-
gramming applications directly using standard CORBA 2.x
APIs has often yielded (1) brittle servant implementations that
are hard to optimize, maintain, and enhance and (2) overly
static or non-standardized mechanisms for bootstrapping and
(re)configuring ORB components and services [9].

To address these problems, therefore, the OMG adopted the
CORBA Component Model (CCM) specification [10]. The
CCM defines a framework for generating distributed servers
into which developer can configure custom component logic.
In theory, the adoption of the CCM should reduce the effort
required to integrate portable components that implement ser-
vices and applications. Moreover, the CCM should simplify
the reconfiguration and replacement of existing application
services by standardizing interconnections among components
and interfaces.

In practice, however, the CCM standard and implementa-
tions are as immature today as the underlying CORBA stan-
dard and ORBs were three to four years ago. For instance,
CCM implementations are not yet particularly efficient, pre-
dictable, or scalable. Moreover, commercial CCM vendors are
largely targeting the requirements of e-commerce, workflow,
report generation, and other general-purpose business appli-
cations. The middleware requirements of these applications
focus on functionality and interoperability, however, with lit-
tle emphasis on assurance of, or control over, mission-critical
QoS aspects, such as timeliness, precision, dependability, min-
imal footprint, and power consumption [11]. As a result, it
is not feasible to use contemporary off-the-shelf CCM im-
plementations for applications with demanding QoS require-
ments.

Solution approach! reflective middleware: Our prior re-
search on CORBA middleware has explored many efficiency,
predictability, and scalability aspects of ORB endsystem de-
sign, including static [12] and dynamic [13] scheduling, event
processing [14], I/O subsystem [15] and pluggable proto-
col [16] integration, synchronous [17] and asynchronous [18]
ORB Core architectures, systematic benchmarking of multiple
ORBs [19], and optimization principle patterns for ORB per-
formance [20]. This paper focuses on another key dimension
in the ORB endsystem design space:applying reflective mid-
dleware techniques to implement QoS-enabled versions of the
CCM.

Reflective middleware is a term that describes a loosely or-
ganized collection of technologies designed to manage and

control hardware/software system resources based on mount-
ing R&D experience with distributed applications and sys-
tems [21]. Reflective middleware techniques enable dynamic
changes in application behavior by adapting core software and
hardware mechanisms both with or without the knowledge of
applications or end-users [22]. Figure 1 illustrates the key ar-
chitectural focal points where we are applying reflective mid-
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Figure 1: Focal Points of Reflective Techniques for CORBA
Middleware

dleware techniques to improve the configurability and adaptiv-
ity of QoS-enabled CCM implementations. In this paper, we
illustrate how reflective middleware techniques are being ap-
plied to improve the adaptivity of the following CORBA and
CCM mechanisms.� Selecting optimal communication mechanisms: To
present a homogeneous programming model for application
developers, CORBA hides the location of objects from client
applications. By examining an object’s location reflectively,
however, a CORBA ORB can select an optimal communica-
tion mechanism automatically when itbindsan object refer-
ence [23]. To avoid violating the CORBA object model, how-
ever, this selection must occur without direct application in-
tervention so that middleware performance and predictability
can be optimized transparently. In particular, robust and au-
tomated ORB collocation support [20] is necessary since the
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CCM encourages complex, dynamically changing object com-
position relationships [24].� Managing QoS aspects of components in their con-
tainers: In the CCM, acontainermanages the implemen-
tation of a component by encapsulating it within a run-time
environment that provides certain services, such as security,
event notification, and transactions. In addition, CCM contain-
ers should be extended to manage component implementation
QoS aspects, such as memory and bandwidth management,
concurrency, dependability, security, and power management.
Such extensions would allow ORB endsystems to support dy-
namic QoS configuration since they could inspect and adjust
a component’s QoS aspects via its container. By factoring
QoS adaptation policies and mechanisms into containers, com-
ponents developers can defer the selection of a component’s
QoS requirements until run-time, thereby enhancing compo-
nent flexibility and adaptability.� Dynamically (re)configuring selected parts of compo-
nent implementations: Next-generation applications will
increasingly run in wireless and mobile network configura-
tions where there may be noa priori knowledge of (1) the
appropriate implementation of service components, (2) the op-
timal partitioning of service components onto network nodes
and (3) Activation of components need to occur in real-
time which means that the initialization process should not
be a bottleneck. Thus, on-demand linking/unlinking mecha-
nisms are necessary to (re)configure component implementa-
tions dynamically. The lifecycle for linking/unlinking of these
components must be optimized using reflective middleware
techniques to minimize footprint, prolong battery life, maxi-
mize extensibility, and meet key application QoS requirements
more adaptively.

We are applying these reflective middleware techniques at
various levels, ranging from the ORB Core up to CORBA
Component Model services. The vehicle for this research is
TAO [12], which is an open-source1, CORBA-compliant ORB
designed to support applications with demanding QoS require-
ments. Figure 1 illustrates how CORBA components, features,
and services are being integrated into the TAO ORB endsys-
tem.

Paper organization: The remainder of this paper is orga-
nized as follows: Section 2 outlines the key features of the
CORBA Component Model (CCM); Section 3 (1) motivates
key challenges faced when designing CCM implementations
to support QoS-enabled applications and (2) outlines the re-
flective middleware techniques we are applying to address
these challenges; Section 4 describes empirical results from

1The source code and documentation for TAO can be downloaded from
www.cs.wustl.edu/�schmidt/TAO.html.

some of our efforts to date; Section 5 compares our approach
with related work; and Section 6 presents concluding remarks.

2 Overview of the CORBA Component
Model Specification

This section presents an overview of the CORBA Component
Model (CCM) architecture, focusing on how entities in CCM
relate to reflective techniques. For complete coverage, please
see [10].

Components: A component is a basic CORBAmeta-type,
i.e., it can be referenced by multiple object references of dif-
ferent types. Each component has a set ofsupported inter-
facesthat it inherits from IDL interfaces or another compo-
nent. These interfaces, collectively called the component’s
supported interfaces, define the component’s equivalent inter-
face. A component encapsulates a design entity and is iden-
tified by a component reference. For “component-unaware”
clients, component references behave identically to regular ob-
ject references,i.e., clients can invoke operations defined in
supported interfaces. As shown in Figure 2, components in-

Component
(Supported interface)

implementations
facet

facets

Component reference

Figure 2: The Architecture of a CCM Component

teract with external entities, such as services provided by the
ORB or other components, via the followingport mechanism:� Facets: A facet, also called aprovided interface, is an
interface contract exposed by a component. Facets are simi-
lar to componentinterfacesin Microsoft’s Component Object
Model (COM) [25], in that they allow a component to support
unrelated interfaces. Unrelated interfaces exposed through
facets need not be related through inheritance to the compo-
nent’s supported interfaces.

The CCM’s component model allows clients tonavigate
among facets and the equivalent interface defined by a com-
ponent. In contrast, regular CORBA objects only allow clients
to traverse related interfaces through inheritance. Although
clients that use components need not be component-aware,
only component-aware clients can use the CCM navigation
mechanism to traverse the interfaces offered by a component.
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� Component home: The CCM specification introduces
a new keyword,home, which supportscomponent homes. A
component home provides factory method [26] for a compo-
nent, which are responsible for creating or finding instances
of components. Each component home manages exactly one
type of component. Home interfaces can optionally use akey
to manage instances of the managed component. Each key
maps to an instance of the component. Conversely, for akey-
lesshome interface, invoking the factory method simply cre-
ates a new instance of the managed component type.

Component Implementation Framework (CIF): The
CORBA Component Implementation Framework(CIF) de-
fines the programming model for managing the persistent
states of components and constructing component implemen-
tations. The CCM specification defines a declarative language,
theComponent Implementation Definition Language(CIDL),
to describe implementations and persistent states of compo-
nents and component homes. As shown in Figure 3, the CIF
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Figure 3: Using IDL and CIDL for component implementation

uses the CIDL descriptions to generate programming skele-
tons that automate basic behaviors of components, such as
navigation, identity inquiries, activation, state management,
transactions, and security. Many of these standard interfaces,
e.g., navigation, identity inquiries, and activation, provide the
ways tointrospectcomponents and the mechanism for CCM
to be implemented reflectively.

Implementations generated by a CIDL compiler are called
executors. Executors contain the aforementioned auto-
generated implementations and provide hook methods [26]

that allow component developers to add custom component-
specific logic. Executors can be packaged in dynamically
linked libraries (DLL)s and installed in the container of
a component serverthat support a particular target plat-
form/language.

Containers: The CCM container programming model de-
fines a set of APIs that simplify the task of developing and/or
configuring CORBA applications. A container encapsulates a
component implementation and uses these APIs to provide a
run-time environment for the component that it manages. Fig-
ure 5 on page 7 shows the architecture of the container pro-
gramming model.

Each container manages one component implementation
defined by the CIF. A container creates its own POA for all the
interfaces it manages. These interfaces can be decomposed as
follows:� External APIs: These are the interfaces defined by the
component including theequivalent interface, facets, and the
componenthome interface. External APIs are available to
clients.� Container APIs: These include theinternal interfaces
that the component can invoke to access to the services pro-
vided by the container and thecallback interfacesthat the con-
tainer can invoke on the component.
Through the collaboration of these interfaces, a container pro-
vides its managed component access to its POA and the ser-
vices supported by the ORB.

CCM containers also manage the lifetime of component ser-
vants. Four types of servant lifetime policies –method, ses-
sion, component, andcontainer– control the timing of activat-
ing and passivating components.Methodand session policies
causesServantLocators to activate and passivate compo-
nent on every method invocation/session, whereascomponent
and containerpolicies defer the servant lifetime policies to
components and containers, respectively.

There are two types of container interfaces: (1)sessioncon-
tainer interfaces for transient components and (2)entity con-
tainer interfaces for persistent components. TheCORBA Us-
age Modelspecifies the required interaction pattern between
a container, its POA, and CORBA Services (such as Notifi-
cation or Transaction) by specifying the interfaces’ transient-
ness/persistency and cardinality of servant!OID mapping.

The component categorydefines the legal combinations
of the container API types and the CORBA usage models.
By specifying a container’s component category along with
other policies, component developers can specify a wide range
of configuration options in the CIF. The CIF then gener-
ates the component implementation with proper strategies for
QoS aspects, such as persistence, event notification, transac-
tion, security. Thus, when combined with OMG’s Real-time
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CORBA [27] and Messaging [7] specifications, CCM con-
tainers provide application developers with a model for cre-
ating, specifying, and partitioning various run-time QoS as-
pects, such as end-to-end priority and connection bandwidth
utilization, for components in real-time systems.
Packaging and Deployment: The CCM defines standard
techniques and patterns for packaging and deploying compo-
nents. The CCM uses theOpen Software Description(OSD),
which is an XML Document Type Definition (DTD) defined
by W3C to describe software packages and their dependencies.
The CCM OSD feature is useful for certain real-time applica-
tions that require dynamic configuration or off-site software
maintenance, such as upgrading software packages on-board
space vehicles in-flight.
ORB extension! locality constrainted interfaces: His-
torically, locality-constrained interfaces have been lim-
ited to ORB-defined types, such asCORBA::NVList,
CORBA::Request, and CORBA::TypeCode, and were
often defined using so-called pseudo-IDL (PIDL) [28]. To
support the component model efficiently, and to eliminate
the need for PIDL, the CCM specifies a new IDL keyword,
calledlocal, which standardizes the definition oflocality
constrainedinterfaces.

As its name implies, a local interface is only valid in the
process in which it is instantiated. Thus, it cannot be exter-
nalized to or invoked from other processes. Adding standard
support for locality constrained interfaces to CORBA is par-
ticularly important for server-centric components because it
helps improve performance and minimize memory footprint.

3 Applying Reflective Middleware
Techniques to Resolve Key Design
Challenges for QoS-enabled CCM
Implementations

This section describes the key research challenges that
CCM developers must address to support QoS-enabled appli-
cations and outlines the reflective middleware techniques we
are applying to address these challenges.

3.1 Challenge 1: Achieving QoS-enabled Loca-
tion Transparency Adaptively

Context: Location transparency is an important feature of
the CORBA programming model. It allows applications to
invoke operations via well-defined interfaces, without having
to be concerned with where the target components reside.

Problem: A straightforward strategy for implementing lo-
cation transparency is to treat all operations as remote invoca-
tions that are sent via IIOP over TCP/IP. This strategy imposes

unnecessary communication overhead, however, when an ob-
ject resides within the same host or the same address space as
the client. Thus, quality ORBs must determine the actual loca-
tion of a target object to optimize performance, while shielding
developers from these details to simplify programming.

As shown in [29], an ORB can improve performance sub-
stantially by determining the location of target objects and then
invoking operations using the most efficient communication
mechanism. For example, when invoking an operation on a
target component collocated on the same host, an ORB should
choose a communication mechanism, such as shared memory,
that is more efficient than “loopback” TCP/IP. This selection
process is called the “collocation optimization.”

It is important, however, that collocation optimizations be
implemented in a “QoS-enabled” manner. In another words,
applying collocation optimizations should not interfere with
QoS mechanisms provided by the underlying ORB endsys-
tem. For instance, two real-time ORB endsystem mecha-
nisms defined by the Real-time CORBA specification arepri-
oritized schedulingand QoS-enabled communication chan-
nels[27]. Prioritized scheduling ensures that applications re-
quiring QoS support receive enough resources to meet their
deadlines. QoS-enabled communication channels ensure the
ORB endsystem’s communication infrastructure allocates suf-
ficient bandwidth, CPU, and memory resources to satisfy ap-
plication QoS requirements end-to-end.

Solution! Reflective selection of optimal communication
mechanisms: To select an optimal communication mecha-
nism, an ORB must apply collocation optimizationsreflec-
tively at run-time. In general, these optimizations must be in-
visible to ORB users to avoid violating CORBA’s object model
transparency. Moreover, although certain collocation opti-
mization mechanisms (such as direct function calls or shared
memory) may befaster than other communication mecha-
nisms (such as TCP loopback or message queuing), a QoS-
enabled ORB must select a communication mechanism based
on their client/object QoS requirements. For example, to avoid
incurring priority inversion, a reflective QoS-enabled collo-
cation optimization mechanism could establish multiple con-
nections to partition ORB communication between client and
server threads with different QoS requirements.

When object migration occurs, an ORB must re-select the
optimal communication mechanism. To support migration,
an operation invocation will receive aLOCATION FORWARD

message and a new object reference will be examined. As
with the original binding, the ORB should determine the ap-
propriate communication mechanism reflectively, taking into
account the QoS characteristics of the various clients and ob-
jects involved in the migration.

Applying reflective collocation mechanisms in TAO: Fig-
ure 4 illustrates how TAO is designed to support reflective col-
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location mechanisms. TAO determines an object’s location
when it binds an object reference [23] or receives aLOCA-
TION FORWARD message. If the object is local to the process,
TAO also considers the QoS policies associated with the object
to guide its selection of an appropriate communication mech-
anism, which may not necessarily be the “fastest” mechanism.

For instance, connections and threads are often used to
differentiate QoS requirement levels and execution priori-
ties [27]. To minimize priority inversion, however, TAO avoids
multiplexing connections with traffic that possesses different
QoS requirements [17]. Thus, via reflection, TAO may de-
cide to use a less efficient, but more predictable, collocation
mechanism after examining the effective policies of an object
reference.

3.2 Challenge 2: Changing Component QoS
Properties Adaptively

Context: Next-generation applications require greater QoS
support from their middleware. In CORBA-based middleware,
this QoS support is provided by ORB endsystems [12]. For
instance, the OMG defines the Real-time CORBA [27] and
CORBA Messaging [7] specifications to standardize how ap-
plications interact with the QoS and real-time mechanisms that
OS’s provide.

Problem: Even with the adoption of Real-time CORBA and
CORBA Messaging, component developers still must program
applications manually to utilize the real-time or messaging ca-
pabilities of an ORB. Unfortunately, this manual process is te-
dious, error-prone, and often sub-optimal because application
developers must explicitly program end-to-end [30] QoS fac-
tors, such as service level (e.g., deterministic, predictive, vs.
best-effort) and flow specifications [31].

One reason that programming sophisticated QoS support
manually is hard is because it cuts across [8] many aspects

of functionality provided by components. For example, a
multimedia application running on an OS that provides zero-
copy buffer optimizations [32] may need to interact with many
OS mechanisms to acquire/release buffers, control flow rate,
pace the flow, and reserve bandwidth. Moreover, program-
ming these complex QoS aspects manually tends to tightly
couple components to particular OS QoS mechanisms [22],
which yields sub-optimal performance when applications must
switch adaptively among different QoS mechanisms on differ-
ent OS platforms and networks.

Solution! Reflective management of component QoS as-
pects by their containers: QoS-enabled CCM implementa-
tions must be designed to extract QoS aspects from their com-
ponents andweavethese aspects together through dynamic
configuration and composition. For instance, as described in
Section 2, each CCM container uses a dedicated POA to man-
age the interfaces supported by its managed component. Thus,
containers, not application programmers, should be responsi-
ble for configuring QoS aspects of components reflectively,
based on criteria such as priorities, deadlines, or network con-
ditions, such as congestion.

A container is an ideal entity to manage a component’s QoS
policies because (1) POAs are the key policy designators in
both the Real-time CORBA and CORBA Messaging specifica-
tions and (2) the component model encourages composition of
unrelated objects [24]. Therefore, a container provides a cen-
tral repository that allows unrelated implementation objects to
collaborate without explicit prior knowledge of their existence
or QoS properties.

Applying container-based QoS adaptivity in TAO: Fig-
ure 5 illustrates the design of TAO’s CCM container model.
To isolate the QoS properties of a component into its man-
aging container, TAO’s CCM implementation is designed to
allow a component’s QoS properties to be configured by its
container reflectively. For example, QoS reflection mecha-
nisms can allow a component to specify or monitor its QoS
requirements and provide feedback on the performance status
of the component to its managing container. In addition, the
deployment information in component descriptors can be ex-
tended to deploy components using containers with different
QoS properties. For example, assume a logging service com-
ponent must forward large amount of data to a central logging
repository in a timely manner. With a container implementa-
tion that supports QoS adaptation, developers can deploy the
original component with this container and specify the QoS
requirements to enhance the timeliness of the component.

By decoupling component implementations from the QoS
configuration mechanisms defined by containers, TAO allows
QoS-unaware components to be reused with various QoS
properties in different applications without modifying their
implementations. Moreover, it is easier to monitor and con-
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trol the dynamic behavior of an implementation with different
QoS configurations.

3.3 Challenge 3: Changing Component Behav-
ior and Resource Usage Adaptively

Context: As discussed in Section 2, component implemen-
tations in the CCM are callexecutorsand are packaged into
dynamic-linked libraries (DLL). The use of DLLs enables the
installation of components on genericcomponent servers. A
component server may serve a large number of components,
some of which will be used frequently and others less fre-
quently.

In general, developers of next-generation component-based
applications may not knowa priori the most effective
strategies for (1) implementing components or (2) collocat-
ing/distributing multiple component executors into processes
and hosts. If developers commit prematurely to a particular
configuration of components, however, this can impede flex-
ibility, reduce overall system performance and functionality,
and unnecessarily increase resource utilization. Often, initial
component configuration decisions may prove to be subopti-
mal over time,e.g., platform upgrades or increased workloads
may require the redistribution of certain components to other
processes and hosts.

Therefore, it is may be necessary to make component con-
figuration or implementation decisions as late as possible in
an application’s development or deployment cycle. Moreover,
for applications with high availability requirements, it may be
necessary to perform component updates online,i.e., without
having to modify or shut down an application obtrusively.

Problem: Although the number of components configured
into a component server may be large, not all installed compo-
nents will be used simultaneously. Care must be taken when
a container chooses its DLL linking/unlinking strategy since
keeping unused DLLs linked into an application for extended
periods can consume limited system resources, particularly
memory. Conversely, linking and unlinking DLLs upon ev-
ery method invocation not only degrades system performance,
but can also consume other system resources, such as battery
power in mobile devices.

Solution! Reflective linking/unlinking of component ex-
ecutors: To address the problems mentioned above, compo-
nent servers should reflectively manage the lifetimes of their
executor DLLs. The following two patterns – Component
Configurator [33] and Evictor [3] – can help to guide this pro-
cess:� Component Configurator pattern: The Component
Configurator pattern decouples the implementation of services
from the time when they are configured. This pattern supports
various (re)configurationstrategies that component servers can
use to link/unlink the DLL containing component executors
implementations on-demand. For example, during the initial
component configuration phase, a component server can use
the Component Configurator pattern to (1) dynamically link
its executors from DLLs that contain these components and
(2) set up the interconnections specified by the components’
assembly descriptors. On the other hand, component config-
urator can also unlink then re-link component executors dy-
namically when an updated implementation is available� Evictor pattern: The Evictor pattern describes a gen-
eral strategy for limiting memory consumption. This pattern
can be used by component servers to reflectively passivate
component executors that are used infrequently and unlink
their DLLs. For instance, a component that generates authen-
tication certificates may be used only at the beginning of a
session. Once a certificate is generated, therefore, it need not
be retained during the remaining secure session.

Both the Component Configurator and Evictor patterns
should be guided by policies and environmental conditions.
For example, the Component Configurator pattern can be used
to reconfigure component implementations based on informa-
tion available in CCM component descriptors, such as apply-
ing componentfeatures. Componentfeatures is an
XML entity in component descriptor that describes a compo-
nent’s capabilities and operation policies. Likewise, eviction
policies should reflect common usage patterns based on pe-
riodic ORB endsystem monitoring mechanisms or resource
management strategies.

Applying dynamic (re)configuration in TAO: TAO’s
CCM implementation supports the following features that en-
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able dynamic (re)configuration of component executors.� On-demand linking: On-demand linking of compo-
nent interface implementations is achieved in TAO via a com-
bination of the Component Configurator pattern [33], the
ACE Service Configurator framework [34] that implements
this pattern, and standard CORBAServantManagers [35].
The ACE Service Configurator framework dynamically links
and unlinks component executors stored in DLLs. Two
types of ServantManager are supported by a POA:
(1) ServantActivators, which activate/deactivate ser-
vants in a POA’s active object map on-demand and (2)
ServantLocators, which are designed to implement user-
defined object demultiplexing and servant lifetime managing
mechanisms on a per-invocation basis.

TAO’s CCM framework enhances containers to provide
their own ServantLocators that link in the necessary
component executors from DLLs on-demand, as shown in
Figure 6. The same mechanism also detects the availabil-
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Figure 6: Dynamic Linking/Unlinking of Component Parts via
ServantManager

ity of new component implementations and switches to use
these updated versions automatically. For instance, TAO’s
ServentLocators can detect updated DLLs containing
component executors and delegate the actual work to ACE
Service Configurator to link these executors on-demand. This
feature helps minimize system resource usage by not link-
ing component executors until they are accessed. In addition,
TAO’s CCM implementation enhances component descriptors
to provide meta-information that the ACE Service Configura-

tor uses to swap component executors dynamically.� Eviction: TAO’s CCM implementation defines a usage
query interface that returns certain usage information, such
as frequency of use and time of last use, of executors. In-
ternally, TAO’s CCM implementation uses anevictormecha-
nism, which queries components’ usage interfaces and applies
eviction policies to determine whether to passivate a com-
ponent executor and unlink its DLL. In addition, component
descriptors can be extended to include eviction strategies or
to predefine component usage patterns that provide hints to
TAO’s CCM evictor mechanism. The activation of TAO’s
evictor mechanism can be controlled by policies selected by
component server developers. Eviction can then be triggered
either periodically or by monitoring system resources, such as
CPU load or memory usage.

4 Current Progress and Empirical Re-
sults

In this section, we report the results of our ongoing efforts to
enhance TAO to support the reflective middleware techniques
described in Section 3.

Current Progress: We have added a QoS adaptation layer
that shields TAO from differences among the QoS interfaces
on different OS platforms. Key features in this adaptation
layer include (1) support for prioritized scheduling by par-
titioning requests for different QoS requirement into differ-
ent threads and servicing these threads through different end-
points, (2) support for initializing endpoint QoS properties,
such as bandwidth reservation and flow pacing, and (3) sup-
port for portable scheduling control. These mechanisms are
then used to implement the QoS-aware containers described
in Section 3.1.

We have implemented a container prototype that supports
the on-demand linking and eviction of component executors
described in Section 3.3. We are in the process of strategiz-
ing the eviction mechanism and will eventually integrate with
TAO’s CCM component usage reflection support.

TAO supports two co-process collocation mechanisms [29]
and several other co-host optimization mechanisms via its
pluggable protocols framework [16]. Currently, however, TAO
only allows the reflective selection of co-process collocation
optimizations, though we are adding a more comprehensive
collocation selection mechanism, outlined in Section 3.1. The
remainder of this section presents empirical results of perfor-
mance comparisons of the collocation optimization mecha-
nisms supported by TAO.

Measurement techniques: The following four ORB com-
munication optimization mechanisms were measured in these
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Figure 7: Buffered One-way Request Throughput for Various
TAO Protocols

experiments: (1) shared-memory transport for optimizing co-
host communication, (2) UNIX domain socket, which is also
a co-host optimization mechanism, (3)Thru POAco-process
collocation optimization [29], and (4)Direct co-process col-
location optimization. Compared to invoking a method on
local interface, which is a new interface type in the CCM,
invoking a method using theDirect collocation strategy only
incurs one extra virtual function call. Therefore, it indicates
the benefits of declaring an interfacelocal.

We measured the performance of TAO’s collocation opti-
mization mechanisms by invoking operations that sent a se-
quence of 4 and 1,024 elements oflongs. Both server
and client ran on the same host to allow us to compare the
performance gain of applying each optimization mechanism.
The performance of IIOP is measured as a baseline for non-
optimized communication.

Hardware/OS Benchmarking Platforms: The tests were
conducted using a Gateway PC with two 500 Mhz Pentium-
III CPUs running Microsoft Windows 2000 and an a Ultra-
SPARC with four 300Mhz UltraSparcs running SunOS 5.7.
We compiled the test on NT using Microsoft Visual Studio
with Service Pack 3 and on Solaris using egcs version 2.91.60,
but using full optimization.

Results: Figure 7 shows the performance of TAO’s colloca-
tion optimization mechanisms compared with the IIOP base-
line. Shared-memory transport is labeled as SHMIOP and
UNIX domain transport is labeled as UIOP in the figure. The
results in this figure illustrate the importance of configuring
an ORB’s collocation selection mechanism reflectively to take
advantage of OS platform the ORB runs on. For example,
on Windows NT, the performance of SHMIOP is around 50%
faster than that of IIOP. However, it it only marginally faster
(10%) than IIOP on UNIX, due to the higher overhead of

process-level semaphores on UNIX compared with Windows
NT. Thus, UIOP outperforms actually SHMIOP on Solaris
machines.

Our current implementation of SHMIOP in TAO uses the
loopback localhost pseudo-device interface as a signaling
mechanism. Thus, we notify the ORB’s reactive [33] event
loop via a socket on each send operation. We expect the per-
formance of SHMIOP will be enhanced greatly after we im-
plement a multi-threaded version of SHMIOP that uses “zero-
copy” shared memory buffers. However, the current SHMIOP
implementation is required to support applications that are not
multi-threaded.

5 Related Work

CORBA is increasingly being adopted as the middleware of
choice for a wide-range of distributed applications and sys-
tems. Thus, the need to develop highly flexible, config-
urable, efficient, predictable, and scalable CORBA applica-
tions has motivated research on policies and mechanisms for
QoS-enabled CCM. The following work on middleware and
component technologies is related to our research.

Reflective ORBs: Kon and Campbell [21] demonstrate that
TAO can be reconfigured at run-time by dynamically linking
in the required modules. Although their research provides a
proof-of-concept for dynamic configurable middleware frame-
work, their research does not explore performance implica-
tions and optimizations related to component-based middle-
ware. Our proposed research on dynamic configuration will
concentrate on reducing memory footprint reflectively for sup-
porting component model, without compromising the com-
pleteness and the performance of the model.

QuO: The Quality Objects(QuO) distributed object mid-
dleware is developed at BBN Technologies [22] by applying
Aspect-Oriented Programming (AoP) [8] techniques to adap-
tive applications running over wide-area networks. QuO is
based on CORBA and supports: (1)run-time performance tun-
ing and configurationthrough the specification of operating
regions, behavior alternatives, and reconfiguration strategies
that allows the QuO run-time to adaptively trigger reconfigu-
ration as system conditions change (represented by transitions
between operating regions), (2)feedbackacross software and
distribution boundaries based on a control loop in which client
applications and server objects request levels of service and
are notified of changes in service, and (3)code mobilitythat
enables QuO to migrate object functionality into local address
spaces in order to tune performance and to further support
highly optimized adaptive reconfiguration. We are currently
collaborating with the BBN QuO team to integrate the TAO
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and QuO middleware as part of the DARPA Quorum integra-
tion project. We are planning to apply the lessons learnt in the
project into the implementation of QoS-enabled containers.

COM interceptors: Hunt and Scott [36] described how to
implement interceptors in COM. The concept they used to im-
plement interceptors is similar to TAO’s collocated stub [29],
in that both use alternative stubs to masquerade as operation
targets. While this concept is effective, their work was done in
the context of COM. Therefore, our research will explore the
effects of applying these concepts to CCM.

JinACE: Part of the work on reflective CCM outlined in this
paper originated in the JinACE project. As shown in Fig-
ure 8, JinACE is a component-based, standards-basedad hoc
networking platform, design for high performance and small
footprint, opening up new domains forad hocscenarios. It is
based on a set of design patterns, which provide on-demand
linking, activation, eviction and lookup of components rep-
resenting services. Our research on JinACE was inspired by

NETWORK

DIGITAL
CAMERA

COMPUTER

PRINTER

TELEVISION

HANDHELD
DEVICE

CD PLAYER

SERVICE (CD)

SERVICE
(PAGE,COLOR)

SERVICE
(CHANNEL,CONTRAST)

Figure 8: Overview of JinACE

Sun’s Jini Technology [37]. By examining Jini’s key design
features and protocols, we identified a pattern language con-
sisting of patterns for component discovery, on-demand link-
ing/unlinking, and dynamic activation/deactivation. One goal
of JinACE is to make this pattern language available to middle-
ware standards written in programming languages other than
Java. We are planning to merge JinACE with the TAO’s CCM
implementation components.

6 Concluding Remarks

Recent CORBA specifications define better support for QoS
and configurability. In particular, the CORBA Compo-
nent Model (CCM) [10] defines standard interfaces, poli-
cies, and services for structuring, integrating, and deploying

CORBA components. Likewise, the Real-time CORBA [6]
and CORBA Messaging [7] specifications address many end-
to-end quality-of-service (QoS) aspects. We believe, however,
that these specifications will be unsuitable for an important
class of QoS-enabled applications unless ORB implementa-
tions applyreflective middleware techniquesto automate the
selection and adaptation of key QoS aspects. The reflective
middleware techniques we are focusing upon currently include
(1) selecting optimal communication mechanisms, (2) manag-
ing QoS aspects of CORBA components in their containers,
and (3) (re)configuring selected parts of component executors
dynamically. We are applying these techniques to TAO, which
is our platform for implementing, optimizing, and experiment-
ing with QoS-enabled CCM.
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