Caching

Example

Michael Kircher, Prashant Jain
Michael.Kircher@siemens.com
Corporate Technology, Siemens AG., Munich, Germany

pjain@gmx.net

IBM Research, Delhi, India

The Caching pattern describes how to avoid expensive reacquisition of
resources by not releasing the resources immediately after their use. The
resources retain their identity, are kept in some fast-access storage, and are
re-used to avoid having to acquire them again.

Note: This pattern appeared in a heavily reworked and updated version in
the book Pattern-Oriented Software Architecture — Patterns for Resource
Management published by Wiley [POSA3].

Consider a network management system (NMS) that needs to monitor the
state of many network elements (NEs). The NMS is typically implemented
as a three-tier system. End-users interact with the system using the
presentation layer -- typically a GUI. The middle-tier comprising the
business logic interacts with the persistence layer and is also responsible for
communicating with the physical NEs. Since a typical network consists of
thousands of NEs, it is very expensive to set up persistent connections
between the middle-tier, the application server, and all the NEs. On the other
hand, an end-user can select any of the NEs using the GUI to get details of
the NE. The NMS must be responsive to the user request and hence should

Context

Problem

provide low latency between user selection of an NE and the visualization
of its properties.

connections

Establishing a new network connection for every network element selected
by the user and destroying it after usage incurs overhead in the form of CPU
cycles inside the application server. Also, the average delay to access a
network element can be too slow.

Systems, that repeatedly access the same set of resources and need to
optimize for performance.

Repetitious acquisition, initialization, and release of the same resource
causes unnecessary performance overhead.

In situations when the same component or multiple components of a system
access the same resource, repetitious acquisition and initialization incurs
cost in terms of CPU cycles and overall system performance.

Memory must be constantly allocated and later released to accommodate
these resources. The cost of acquisition, access, and release of frequently
used resources should be reduced to improve performance.

To address the problem the following forces need to be resolved:

* Performance — The cost of repetitious resource acquisition,
initialization, and release must be minimized.

» Usage Complexity — The solution should not make acquisition and
release of resources more complex and cumbersome.

» Implementation Complexity — The solution should not add unnecessary
levels of indirection to access resources.

Solution
Temporarily store the resource in a (cheap) buffer called a cache.
Subsequently, when the resource is to be accessed again, use the cache to
fetch and return the resource instead of acquiring it again from the resource
environment such as an operating system that is hosting resources. The
Cache identifies resources by their identity, such as pointer, reference, or
primary key.
To keep around frequently accessed resources and not release them helps
avoid the cost of (re-)acquisition and release of resources. Using a cache
eases management of components that access the resources.
When resources in a cache are no longer needed, they are released. The
cache implementation determines how and when to evict resources no
longer needed. Alternatively, this behavior can be controlled by strategies.
The Caching pattern is different from the Pooling pattern [POSA3] since
Caching maintains the identity of a resource in memory; Pooling relies on
a resource becoming anonymous and possibly gaining a different identity
later.
Structure
The following CRC cards show how the participants interact with each
other
Class Collaborator Class Collaborator
Resource User * Resource Resource
Responsibility * Resource Environment || Responsibility
* Acquires the resource * An entity, such as
from the Resource memory or a connection.
Environment. * Is acquired from the
» Accesses the resource to resource environment
retrieve data. either directly by the
resource user or indirectly
by the resource cache.
Class Collaborator Class Collaborator
Resource Cache * Resource Resource Environment * Resource
s * Resource e
Responsibility Environment Responsibility
» Buffers resources. * Manages several
+ Eventually evicts resources.
resources.

Dynamics

The resource environment, e.g., an operating system, hosts the resources
that are initially acquired by the resource user. The resource user then
accesses the resource. When no longer needed, the resource is released to
the cache. The resource user uses the Cache to acquire resources, that it
needs to access again. Acquisition of a resource from the Cache is cheaper
with respect to CPU utilization and latency compared to acquisition from
the resource environment.

The explicit release to and re-acquisition from the Cache introduces usage
complexity. This can be alleviated by using a Virtual Proxy [GHJV95] or
Interceptor [POSA2] that makes the operations transparent. However, the
level of indirection as a result of the lookup in the Cache cannot be avoided.

Many resources have states associated with them that must be properly
initialized on resource creation. If resource users do not modify resource
state, the state of the resources can get lost without losing system
information.

In some cases, however, when resources are accessed using write
operations, consistency needs to be ensured between the original resource
and the resource mirroring it. For details, please refer to the Implementation
section.

The following figure shows how the resource user acquires a resource from
the resource environment. The resource is then accessed by the user. After
the resource has been used it is put into a Cache instead of releasing it to the
resource environment.

When the resource user needs to access the same resource again, it uses the
Cache to retrieve it. This behavior is depicted in the following sequence
diagram.

: User : Resource Cache : Resource : Resource
Environment

1

acquire —»I:]
1 resource
resource =

access

release

resource :|

acquire

resource

Implementation

To implement the Caching pattern, the following steps should be followed:

1 Select resources: Select resources that benefit from Caching. These are

typically resources that are expensive to acquire but used frequently.
Caching is very often introduced as an optimization technique after
identification of performance bottlenecks.
In distributed systems two forms of Caching can exist: client-side and
server-side caching. Client-side caching is useful to save the bandwidth
and the time it takes to repeatedly transmit server data to the client. On
the other hand, Server-side Caching is useful when many client requests
lead to repeated acquisitions of the same resource in the server.

2 Determine a Caching interface: When resources are released and re-
acquired from the Cache directly by the resouce user, a proper interface
must be designed. This interface needs to offer a release and an
acquire method.

public interface Cache {
public void release (Resource resource);

public Resource acquire (Identity id);
}
The interface above relies on the availability of a separate ID; this might
not be the case for every resource. In some cases the ID of a resource
might need to be calculated from constituents of the resource.

The release method is called by the resouce user when it releases the
resource to the Cache instead of releasing it to the resource environment.

3 Implement the Cache: The following code snipplet shows the
implementation of the release method that is called on resource release
by the resource user. It adds the resource to the map so that a later call on
acquire can find it via its ID. For optimization reasons it is advisable to
use a hash map since that can perform lookup in almost constant time.
The Comparand pattern [CoHa01] gives some ideas on how to perform
comparisons between IDs.

public class CacheImpl implements Cache {
public void release (Resource resource) {
String id = resource.getId ();
map_ .put (id, resource);

}
//

java.util.HashMap map_ ;
}
Depending on the kind of resource, the ID of the resource has to be first
determined. In the case of our example, the resource can identify itself.

The acquire method of the Cache implementation should be responsible
for looking up the resource from the map based on the ID. When
acquisition from the Cache fails, which means the resource with that
identity has not been found, the resource should be acquired from the
resource environment. This is especially useful if the Cache has to be
integrated transparently. In addition, when resource sharing among
multiple users needs to be avoided, the entry with the corresponding ID
should be removed from the map.

The following piece of code shows an implementation of the acquire
method.

public class CacheImpl implements Cache ({
public Resource acquire (Identity id) {
Resource resource = map_ .get (id);
if (resource == null)
resource = resource factory .create (id);
return resource;
}
//
ResourceFactory resource factory ;

}

4 Determine how to hook in the Cache (optional): If the Cache will be
integrated transparently use an Interceptor or a Virtual Proxy to intercept

release and acquisition requests to the resource environment and delegate
them to the Cache.

5 Decide on eviction strategy: The resources stored in the Cache require
memory. When not used for a long time, it becomes inefficient to hold on
to those resources.Therefore, use an Evictor [POSA3] to remove
resources that are no longer being used. The integration of the Evictor can
be done in multiple ways. For example, an Evictor can get invoked in the
context of the release method or can be regularly invoked by a timer. Of
course, this behavior influences overall predictability. In addition, the
Evictor can be configured with different strategies such as LRU, LFU,
etc. The Strategy [GHJV95] pattern can be used for this.

6 Ensure consistency: In cases where the resource mirrors data that are

actually held in some storage, consistency between the mirror and the
original has to be ensured. When the original can change, callbacks are
used to inform the mirror to update its copy. When the mirror can change,
most Caches apply a strategy called “writing through”. Using this
strategy changes to the mirror are applied to the original and the mirror
directly. This functionality is typically implemented by an entity called a
Synchronizer. The Synchronizer is thus an important participant of the
pattern. Some Caches further optimize this functionality by introducing
more complex logic for keeping the original and mirror in the Cache
consistent.
Use a Strategy [GHIV95] to decide on when to synchronize. In some
cases only special operations, such as write operations, need to get
synchronized immediately, whereas in other cases a periodic update
might be advisable. Also, synchronization might be triggered by external
events, such as updates of the original by other resource users.

In our motivating example, if the physical data at the NE changes, the
memory representation of the NE that is cached must change. Similarly,
if the user changes a setting of an NE, the change must be reflected at the
physical NE.

Example Resolved

Consider the NMS that needs to monitor the state of many NEs. The middle-
tier of the NMS will use the Caching pattern to implement a cache of
connections to the NEs. On user request for a specific connection, the
connection is acquired. When the connection is no longer needed by the
application server, it is stored in the cache. Later, when new requests for the
resource arrive, acquisition is done from the cache thus avoiding high
acquisition cost.

Subsequent connections to other NEs will then be established when the user
first accesses them. When the user context switches to another NE, the

Variants

Known Uses

connection is recycled in the connection pool. If a user accesses the same
NE, the connection will be reused. No delay will occur on first access to
those reused connections.

Variants describe related patterns, that are derived from this pattern by
extending or changing the problem and the solution.

Read-ahead Caches — In a situation where repetitious Partial Acquisition
[POSA3] is used to acquire resources, the system can be designed
efficiently if a Read-ahead Cache is used. The Read-ahead Cache can
acquire resources before they are actually used ensuring that the resources
are available when needed.

Synchronized Cache — A synchronized Cache has to ensure consistency
between the resources in the cache and the original resources (originals),
e.g., the data in a persistent store. Such a Cache would need to ensure that
the state of the cached resources is synchronized with the original.

Cached Pools — In situations, where the identity of a resource matters,
Cached Pools maintain the association between the resource and the
resource user that previously used the resource. This is helpful in situations,
when a resource is returned to the pool but acquired soon after. A simple
solution would be to return the resource immediately to the pool once it is
no longer needed. A more sophisticated solution is to cache the resource
(and hence not have it lose its identity). The cache would serve as an
intermediary storage for the resource. The cache is configured with a time-
out; once the time expires, the resource loses its identity and goes into the
pool. The advantage is a small optimization -- if the same resource is
required and the resource has not yet been returned to the pool, then you
avoid the cost of initialization (virtue of caching).

Paging [Tane02] — Modern operating systems keep pages in memory to
avoid expensive read from swap space on disk. The pages that are kept in
memory can be regarded as being kept in a cache. Only when a page is not
found in cache, does the operating system fetch it from disk.

Offline Files — The Offline Files feature in Windows (since Windows
2000) allows the files and directories of a mounted network drive to be
available offline. The files and directories are thus cached and synchronized
against the original when connected to the network.

Data Transfer Object [Fowl02]. Middleware technologies such as CORBA
and Java RMI allow the remote transfer of objects as opposed to the pure
remote method invocation on a remote object. The remote object is actually

Consequences

transferred “by value” between the client and the server, when methods are
invoked on them locally. This is done to minimize the number of expensive
remote method invocations. The object is held locally in a cache and
represents the actual remote object. Though this approach improves
performance, synchronization between the local copy and the remote
original of the object must be implemented by the user.

Enterprise JavaBeans (EJB) [Sun02b] — Entity Beans of EJB represent
database information in the middle-tier, the application server. This avoids
expensive data retrieval (resource acquisition) from the database.

Web Browsers — Most popular web browsers such as Netscape and Internet
Explorer cache frequently accessed web pages. If a user accesses the same
page, the browsers fetch the contents of the page from cache thus avoiding
the expensive retrieval of the contents from the web site. Timestamps are
used to determine how long to maintain the pages in cache and when to evict
them.

Hardware Cache — Almost every central processing unit (CPU) has an
associated hardware memory cache associated with it. The cache avoids
slow access to the random access memory (RAM). Cache memory is
typically faster than RAM by a factor of two.

Object Cache — An Object Cache applies the pattern to the paradigm of
object-orientation. In this case. the resources are objects that have a certain
cost associated when created and initialized. The Object Cache allows to
avoid those expensive operations when the usage by the resource user
allows for Caching.

Data Cache — A Data Cache applies the pattern to data. Data is viewed as
resource that is in some cases is hard to acquire. For example, the data could
include a complex and expensive calculation or some information that
needs to be retrieved from a secondary storage. The pattern allows to reuse
fetched data to avoid expensive re-acquisition of data when needed again.

iMerge — The iMerge EMS is an element management system for the
iMerge VoIP (voice over internet protocol) hardware system that uses
SNMP as the communication interface. It uses Caching to optimize
visualization and provisioning of lines between network elements.

Caching adds some performance overhead due to an additional level of
indirection, but overall there is a performance gain since resources are
acquired faster.

In detail, there are several benefits of using the Caching pattern:

See Also

* Performance — Fast access of frequently used resources is an explicit
benefit of caching. Unlike Pooling, caching ensures that the resources
maintain their identities. Therefore, when the same resource needs to be
accessed again, the resource need not be acquired or fetched from
somewhere; it is already available.

» Scalability — Avoiding resource acquisition and release is an implicit
benefit of caching. Caching by its nature is implemented by keeping
around frequently used resources. Therefore, just like Pooling, Caching
helps avoid the cost of resource acquisition and release.

» Usage Complexity — Caching ensures that the complexity to acquire and
release resources from a resource user perspective does not increase.

There are some liabilities using the Caching pattern:

» Synchronization Complexity — Depending on the kind of resource,
complexity increases because consistency between the state of the cached
resource and the original data, which the resource is representing, needs
to be ensured.

* Durability — Changes to the cached resource can be lost when the
system crashes. However, if a synchronized cache is used, then this
problem can be avoided.

» Footprint— The run-time footprint of the system is increased as possibly
unused resources are cached. However, if an Evictor is used, then the
number of such unused cached resources can be minimized.

As Caching reduces the number of releases and re-acquisitions of resources,
it reduces the chance of memory fragmentation. This is similar to Pooling.

Caches are not a good idea if the application requires that data is always
available on the expensive media. For example, interrupt-driven 1/O
intensive applications as well as embedded systems have often no hardware
memory caches.

A general note on optimizations: Caching should be applied carefully when
other means, such as optimizing the acquisition of the resource itself, cannot
be further improved. Caching can introduce some complexity, complicating
the maintenance of the overall solution. Therefore consider the trade-off
between performance and complexity before applying Caching.

Pooling [POSA3]—The main idea behind Pooling is reuse of resources. It
helps avoid the cost of (re-)acquisition and release of resources. Resources
are typically anonymous.

Evictor [POSA3]—An Evictor an be used for eviction of cached data.

Virtual Proxy [GHIJV95]—A Virtual Proxy can be used to hide caching
effects. Smart Proxies in CORBA (TAO) intercepting remote invocations
are especially designed for this.

Cache Management [Gran98]—The Cache Management pattern focuses on
how to combine a cache with the Manager pattern [MRB98], where the
Manager pattern centralizes access, creation and destruction of objects. The
description is more specific to objects and database connections, both in the
context of Java.

Acknowledgements

References

[CoHa01]

[Fowl02]

[GHIV95]

[Gran98§]

[MRBOS]

[OMGO2]

[POSA2]

[POSA3]

[Sun02a]

[Sun02b]

Thanks to Ralph Cabrera for sharing his experience on Caching with us and
for providing the iMerge known use. Special thanks to Pascal Costanza, our
EuroPLoP 2003 shepherd, for his excellent comments and patience.

P. Costanza and A. Haase, The Comparand Pattern, European Conference
on Pattern Languages of Programs, Kloster Irsee, Germany, July 2001

M. Fowler, Patterns of Enterprise Application Architecture, Addison-
Wesley, 2002

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns —
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995

M. Grand, Patterns in Java - Volume 1, John Wiley and Sons, 1998

R. C. Martin, D. Riehle, and F. Buschmann, eds., Pattern Language of
Program Design 3, Addison-Wesley, 1998

OMG, Common Object Request Broker Architecture, http://www.omg.org,
2003

D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented
Software Architecture —Patterns for Concurrent and Distributed Objects,
John Wiley and Sons, 2000

M. Kircher and P. Jain, Pattern-Oriented Software Architecture — Patterns
for Resource Management, John Wiley and Sons, 2004

Sun, Java Remote Method Invocations (RMI), http://java.sun.com/products/
jdk/rmi/, 2003

Sun, Java 2 Enterprise Edition (J2EE), http://java.sun.com/j2ee/, 2003

[Tane02] A. S. Tanenbaum, Computer Networks, Fourth Edition, Prentice Hall, 2002

[VSW2002] M. Voelter, A. Schmid, and E. Wolft, Server Component Patterns -

Component Infrastructures illustrated with EJB, John Wiley and Sons,
2002

