
1

Lazy Acquisition

Michael Kircher

Michael.Kircher@mchp.siemens.de

Siemens AG,

Munich, Germany
Copyright © 2001, Michael Kircher

Lazy Acquisition 2
Lazy Acquisition

The Lazy Acquisition pattern defers resource acquisitions to the latest possible point in
time during system execution in order to optimize resource usage. It is an abstraction of
many existing patterns, that follow the same principle.

Example Assume your company is doing cutting-edge software development and therefore it always
has a look at the latest technology specifications. One day your boss comes to you and asks
you: “Michael, did you hear about this new CORBA Component Model technology.” You
say: “Of course, I read the specification several times.” Saying this was a fault, you are now
responsible for being one of the first to ever develop an application server conforming to
the CORBA Component Model (CCM) specification. CORBA components1 try to
encompass many existing technologies, even aiming for compatibility with Enterprise
JavaBeans. Components and containers are at the heart of the technology. The aim of
component technology is on one hand to support better reuse, and on the other hand
separation of concerns. The application programmer developing components, should not
be bothered with things common to most components, such as transactions, security,
persistency, etc.

So called component servers are hosting containers, which themselves host the
components. Of course, a server would not be a real component server if it did not support
many of these containers, and a container would be a poor container, if it supported only
one component instance at a time. Scalability, is one of the key properties expected from a
component server.

Applications based on component technology are normally structured as assemblies of
components. The installation of an application on a component server involves typically
many, possibly hundreds, of components. Loading every component of the application at
its start-up would require many resources, such as memory, transaction IDs, or database
connections, it should therefore be avoided.

How can you achieve scalability regarding the number of applications running at the same
time in the same component server? One possible solution would be to extend your

hardware, e.g. the available memory or even setting up an additional machine, in order to
provide more memory space for your components, but this can get very expensive, and, if
the hardware is not yours, the person maintaining the hardware will definitely not be happy.
To avoid any hardware changes, you could try to rely on OS mechanisms, such as virtual
memory. As it is intended to be transparent, it does not provide full control and can heavily
influence the stability of your system.

1. In the following, if I write about components, I refer to CORBA components, as they are defined by the
CCM specification. CORBA components extend Enterprise JavaBeans to the world of CORBA, as it cannot
provide “write once, run everywhere”, yet, the future has to prove its usefulness.

Session Container

Client A

Client A

Entity Container

instantiated
component

component
not yet instantiated
Copyright © 2001, Michael Kircher

Lazy Acquisition 3
Context A system that must satisfy high demands, such as throughput and availability, while having
restricted resources.

Problem Early acquisition of resources wastes resources, which can lead to high acquisition
overhead and system instability.

Systems that have to manage many resources and/or expensive resource acquisition need
a way to reduce the initial cost of acquiring the resources. If these systems were to acquire
all resources up front, a lot of overhead would be incurred and a lot of resources would be
consumed unnecessarily.

Each installed computing system (resource environment) has only a limited amount of
resources, such as computing power, memory, storage, I/O interfaces, and other resources.
Users should use those resources with care to avoid resource bottlenecks and contention.
Resource bottlenecks are a common reason for system slow-downs and crashes. Efficient
resource management is needed, even though it often complicates the application logic.

This leads to the following forces:

• Contention between resource users, which acquire them early and others which need
them urgently, should be avoided. Component server providers are interested in running
as many components as possible on their application servers while still providing high
stability. How can they run many components on them and not risk instability?

• Expensive acquisitions can lead to unnecessarily high acquisition overhead. For
example, if the component server mentioned above loaded and instantiated all
components of all applications at startup time, it would take a long time to do so, thereby
delaying its readiness for serving requests. Also, it would eventually consume more
resources than available on the host, the resource environment, and would thereby
trigger resource exhaustion and risk instability.

• Transparency to the user should be given in way that the solution should be transparent
programming as well as complexity wise. E.g. the user of a component should not care
about when the component is acquired and how that is accomplished. It only cares about
a valid reference and proper service when accessing it.

• Execution overhead of the solution should be as little as possible. The component server
should not introduce any noticeable delay or slow-down when executing requests on
behalf of the user.

Solution Acquire resources at the latest possible point in time. The resource - such as a loaded shared
library, the computing time for an evaluation of program expression, a new instance of a
object, an initialized object, the state of an object - is not acquired until it becomes
unavoidable to do so.

A Virtual Proxy [GHJV95] intercepts the use of a resource making it available dynamically
- loading the shared library, evaluating the program expression, instantiating the object,
initializing the object, or fetching the state of an object. Note that it is not mandatory to use
a Virtual Proxy, much more it represents one typical solution to this problem.

The usage of these resources reduces the number of resources available by the resource
environment, as acquisition actually takes the resource from the resource environment.

Structure The user access to the resource is intercepted by a Virtual Proxy. The Virtual Proxy
transparently queries the resource environment for the resource. The resource environment
Copyright © 2001, Michael Kircher

Lazy Acquisition 4
hands back an instance of that resource to the Virtual Proxy. The Virtual Proxy now
accesses the resource on behalf of the user.

Dynamics The key dynamics of Lazy Acquisition is the interception of the first access of the resource
by the user, which initially does not own the actual resource. At that time the resource is
acquired. On the second and further access the usage continues normally, without any
intervention.

As soon as a user accesses the resource, the Virtual Proxy intercepts this event and makes
the resource available to them for use. The user does not notice the level of indirection by
the Virtual Proxy.

As you may notice, this pattern describes how resources are consumed, but not how the
resources are freed. Patterns that cover these aspects are for example Evictor [Jain02]
[HeVi99] and Leasing [JaKi00].

Class
Virtual Proxy

Responsibility
• Pretends to be the re-

source.
• Provides the same inter-

face as the resource.
• Makes the actual resource

available via the resource
environment.

Collaborator
• Resource
• Resource

Environment

Class
Resource Environment

Responsibility
• Manages several

resources.
• Might recycle unused

resources.

Collaborator
• Resource

Class
User

Responsibility
• Needs to access some

information; unaware of
the laziness.

Collaborator
• Resource

Class
Resource

Responsibility
• Provide the user request-

ed functionality.

Collaborator

: User

acquire

: Resource
Environment

resource

: Virtual Proxy

access

: Resource

access

<<acquire>>
Copyright © 2001, Michael Kircher

Lazy Acquisition 5
The following UML diagram illustrates the structure of the Lazy Acquisition pattern.

It shows that the user only knows about the resource interface, it is transparent to the user
if the Virtual Proxy or the Resource is accessed.

Implementation The implementation of this pattern is described by the following steps:

1 Define the interface by which the resource is accessed. This interface has to be provided
by the actual resource as well as the Virtual Proxy.

2 Define the strategy by which the resource is actually obtained from the resource
environment by the Virtual Proxy. The Strategy[GHJV95] pattern might be applied to
switch on and off the laziness of acquisitions, e.g., by providing a regular and a lazy
implementation of how resources are obtained from the resource environment.

3 Implement the Virtual Proxy and install the acquisition strategy in it. The Virtual Proxy
hides Lazy Acquisitions on objects like resources. Use delegation to hide Lazy
Acquisitions on functions.

Example Resolved Applying the lessons of system analysis the component server should not instantiate all
components at startup. Instead, a scalable component server should defer instantiation of
components to the time the component is actually needed. The need might arise from
different situations, such as:

• A user wants to access a component of a specific class, but no component of that class
is available.

• A new user wants to access a component of a specific class, but all pooled components
of that class are busy serving users.

This principle is usually called lazy instantiation, which is the application of Lazy
Acquisition to instantiation of objects and components.

To show how lazy instantiation works we give an example of how instantiation of a
component can be delayed until the first actual access.

CCM component servers can be implemented at their heart by using standard CORBA 2.4
features, this means a CORBA component can then possibly consist of many CORBA
objects, and the implementation of each is called a servant.

The following code segment shows the implementation of the Container as Virtual
Proxy. The Container implements the ServantLocator interface which is part of
the Portable Object Adapter (POA), the server-side dispatching mechanism of an Object
Request Broker (ORB), at which all servants are typically registered with their Object ID.

Virtual Proxy

access ()

Resource

access ()

Resource Interface

access ()

User

Resource Environment

aquire ()
<<acquire>>

// lazy acquisition

resource = environment.acquire ();
if (resource = nil)
Copyright © 2001, Michael Kircher

Lazy Acquisition 6
A servant locator can be registered with a POA, instead of the actual servant, so that it gets
pre-invoked and post-invoked on every dispatch to a servant by the POA. Moreover, pre-
invoke allows late binding of the servant for dispatching. The servant locator can select
which servant the operation is invoked on. In the implementation below we use this feature
to find the servant via the object ID. If the servant has not been instantiated yet, we use the
home to query for an instance.

class Container : public PortableServer::ServantLocator
{
public:

// ...
// ServantLocator interface
virtual PortableServer::Servant preinvoke

(const PortableServer::ObjectId &oid,
 ...)

{
 PortableServer::Servant servant;
 if (servant_map_.find (oid, servant) == -1)
 {

 // We do not have a instantiated servant, yet.
 // Find the home for the object
 Home_var home = home_map_[oid];
 servant = home->get_servant_for_oid (oid);
 // Remember the servant
 servant_map_[oid] = servant;

 }
 return servant;
}

virtual void postinvoke (...);

// Container specific method
void register_home_reference

(const PortableServer::ObjectId &oid,
 Components::KeylessCCMHome_ptr home)

{
 home_map_[oid] =

Components::KeylessCCMHome::_duplicate (home.in ());
}

private:
Servant_Map servant_map_;
Home_Map home_map_;

};

In component architectures, such as CCM, so-called component homes are used to find
existing component instances or to create them anew. The CCM specification dictates
interfaces for homes, one of them is the KeylessCCMHome. It supports the
create_component operation, which is used by clients to create new components - at
least that is what the client believes it does. The home can transparently return only a valid
object reference, without actually instantiating the component implementation, the servant.

class MyHome : public POA_Components::KeylessCCMHome {
public:

// ...
Components::CCMObject_ptr create_component ()
{
 PortableServer::ObjectId oid = this->create_new_oid ();
 Components::CCMObject_var component_ref =

contianer_poa_->create_reference_with_id (oid,
"IDL:MyComponent:1.0");

 Components::KeylessCCMHome_var home = this->_this ();
 container_->register_home_reference (oid,

 home.in ());
 return component_ref;

 }
Copyright © 2001, Michael Kircher

Lazy Acquisition 7
PortableServer::Servant get_servant_for_oid
(const PortableServer::ObjectId &oid)

{
 // Lazily Instantiate the servant for this object ID

 ComponentImplementation *component =
new ComponentImplementation;

 container_poa_->activate_object_with_id (oid,
 component);

 return component->_this ();
}

private:
Container *container_;
PortableServer::POA_var container_poa_;

};

The container will use the get_servant_for_oid method, as soon as there is an
actual request for the component. This can happen within the following microseconds, or
hours later, depending on the usage pattern of the client.

The above code was only the component server framework code, no specialized code was
shown. The actual component implements the following IDL:

interface Operations
{

void operation_one ();
};
component MyComponent

supports Operations;

The component implementation does not see anything of the mechanisms internal to the
container.

class ComponentImplementation : public POA_MyComponent
{
public:

// ...
void operation_one ()
{
 // ...
}

}

The next piece of code shows how the client requests a new instance of a component. The
client then either uses the obtained object reference immediately to make a request on the
component, or does some other stuff before invoking an operation for the first time on the
component. In the latter case, especially if many components are created, a lot of initial
instantiation overhead is saved by the component server.

// Use the object home as factory for new
// components
MyComponent_var component = myHome->create_component ();

// ... other things may happen

// Access the component by its interface;
// the actual servant is instantiated lazily
component->operation_one ();
Copyright © 2001, Michael Kircher

Lazy Acquisition 8
Looking at all interactions we get the following sequence diagrams. The client first
accesses the home to get a hold of a valid reference. At this point the actual component is
not created, only a reference to it.

When the client actually accesses the component the first time., the actual component is
created by the home.

Specializations Some specialized patterns derived from Lazy Acquisition are:

Lazy Instantiation - Defer the instantiation of objects/components until the instance is
accessed by a user. As object instantiation is very often linked with dynamic memory
allocation, and memory allocations are typically very expensive, this saves cost up front,
especially for objects that are not accessed, but incurs a dramatic overhead in high-demand
situations.

Lazy Loading - Defer the loading of a shared library until the program elements contained
in that library are accessed. The Component Configurator Pattern [JaSc97] can be used to
implement this. Lazy Loading is often combined with Lazy Instantiation, as for example
objects need to be instantiated.

Lazy State [MoOh97] - Defer the initialization of the State [GHJV95] until the state is
accessed. Lazy State is often used in situations where large state information is accessed
rarely. This pattern becomes even more powerful in combination with Flyweight, or
Memento [GHJV95].

Lazy Evaluation - Avoid evaluation of a node in a syntax tree if it its value is not of interest
because of other nodes values. This approach can significantly improve performance of the
evaluation, as unnecessary computations are avoided.

: Client : MyHome

reference

: Container

create_component

register_home_reference

: Client

get_servant_for_oid

: MyHome: Container

operation_one

: MyComponent
<<create>>

operation_one

preinvoke
Copyright © 2001, Michael Kircher

Lazy Acquisition 9
Lazy Initialization [Beck97] - Initialize the parts of your program the first time they are
accessed. This pattern has the benefit of avoiding overhead in certain situations but has the
liability of increasing the chance of accessing uninitialized parts of the program.

Variable Allocation [NoWe00] - Allocate and deallocate variable-sized objects as and
when you need them. This specialization applies Lazy Acquisition specifically to memory
allocations and deallocations.

Variants Semi-Lazy Acquisition - The idea is that you don't obtain the resource in the beginning but
you also don't wait until the resource is actually needed. You load the resource some time
in between. An example could be a network management system (NMS) where a topology
tree of the network needs to be built. There are 3 options:

1) Build it when the application starts. Pro: The tree is available as soon as the application
is initialized. Con: Slow start-up time.

2) Build it when the user requests it. Pro: Fast start-up time. Con: User has to wait for the
tree to be constructed.

3) Build it after the application has started and before the user requests it. Pro: Fast start-
up time and tree available when needed.

It is option 3 which is quite commonly used in NMS.

Known Uses Singletons [GHJV95], objects that exist uniquely in a system, are usually instantiated using
lazy instantiation. In some cases Singletons are accessed by several threads. To avoid race
conditions between threads during instantiation the Double-Checked Locking [SSRB00]
idiom can be used.

The Haskel language, like other functional programming languages, allows lazy evaluation
of expressions. Lazy evaluation means that an expression is not evaluated until the
expression's result is needed to evaluate another expression. Lazy evaluation of parameters
allows functions to be partially evaluated, resulting in higher-order functions which can
then be applied to the remaining parameters. Evaluation of sub-conditions in a boolean
expression in programming languages like Java or C++ is done using lazy evaluation in the
form of short-circuiting operators e.g. &&.

EJB and COM+ application servers are containers that can host many different components
at the same time. In order to avoid resource exhaustion they need to ensure that only
components, which are actually by clients are active, others should be inactive. A typical
solution is the application of the lazy loading and lazy instantiation patterns to the
components running inside them. This saves valuable resources and assures scalability.

In ad hoc networking only temporal relationships between devices and their components
exist, so that it gets too expensive to hold on to resources not actually needed at the current
moment. This means that components need to be loaded, instantiated, destructed, and
unloaded regularly. Therefore ad hoc networking frameworks need to offer mechanisms
such as lazy loading and lazy instantiation. It is also possible to run lazy discovery of
devices - the application will not be notified until the discovered device list changes from
the last discovery run by the underlying framework [IrDA99].

A common feature of operating systems is to defer the complete loading of application
libraries to the point in time when they are actually needed.

Just-in-Time (JIT) activation is an automatic service provided by COM+ that can help you
use server resources more efficiently, particularly when scaling up your application to do
high-volume transactions. When a component is configured as being JIT activated, COM+
will at times deactivate an instance of it while a client still holds an active reference to the
object. The next time the client calls a method on the object, which it still believes to be
active, COM+ will reactivate the object transparently to the client, just in time.
Copyright © 2001, Michael Kircher

Lazy Acquisition 10
JIT compilation is heavily used in todays Java virtual machines (JVM). The compilation of
the regular Java byte code into fast machine specific assembler code is done just-in-time.
One of the virtual machines supporting this feature is the IBM J9 JVM. The opposite of JIT
compilation is ahead-of-time (AOT) compilation.

JVM implementations optimize JavaTM class loading typically by loading the classes when
the code of that class to be executed the first time. This behavior is clearly following the
Lazy Loading pattern.

A Lazy Person is a person who avoids work. He/she waits until the latest possible point in
time to do the job. For example a lazy student might not do his/her homework until just a
few minutes before the teacher checks it, thereby fulfilling the force of not letting others
know that he/she is actually lazy.

Laziness can become foolishness, if the person does not do the job at all. E.g. if the student
does not do his/her homework at all, he/she might get kicked out of class.

Just-in-Time manufacturing, as used in many industries and lead by the automobile
industry, follows the same pattern. Parts of an assembly are manufactured as they are
needed. This saves cost of fixed storage.

Consequences There are several benefits of using the Lazy Acquisition pattern:

Scalability: Resources are saved until they are actually needed, this allows more efficient
resource usage as the number of resources required at a specific point in time is reduced.
Note that Lazy Acquisition only describes the loading of resources and that a pattern like
Leasing [JaKi00] or Evictor [Jain02][HeVi99] might be needed to ensure the destruction
and unloading of objects and components.

Reliability: The stability of the applications is increased because resource exhaustion
becomes less likely.

Load Adaptation: The pattern enforces that only as many resources are acquired as are
actually demanded. It thereby adapts resource consumption to system load.

There are some liabilities of using the Lazy Acquisition pattern:

Execution Overhead: Lazy Acquisition might incur a significant execution overhead due
to the additional level of indirection.

Space Overhead: The pattern incurs a slight space overhead as additional memory is
required for proxies resulting from the indirection.

Delay: The execution of the Lazy Acquisitions can introduce a significant time delay to the
regular program execution. Especially for real-time systems such behavior is not advisable.

Complexity: The introduction of the pattern might introduce additional complexity to the
system, especially concerning the program logic.

Predictability: The behavior of a lazy acquisition system can become distinctly non-linear
when certain thresholds are reached, e.g. virtual memory systems can end up thrashing.
This disqualifies the pattern for usage in real-time systems.

See Also The following two patterns are related to Lazy Acquisition:

Eager Acquisition [Kirc02] - The Eager Acquisition pattern can be conceived as the
opposite of Lazy Acquisition. Eager Acquisition describes the concept of acquiring
resources up front to avoid acquisition overhead at first access of clients

Pooling [KiJa02] - As both Lazy Acquisition and Eager Acquisition can be sub-optimal in
some use cases, Pooling combines both into one pattern to optimize resource usage.
Copyright © 2001, Michael Kircher

Lazy Acquisition 11
Other existing patterns with the word lazy in them, but not directly related to Lazy
Acquisition are:

Lazy Optimization [Auer96] - Tune performance once the program is running correctly and
the design reflects your best understanding of how the program should be structured.

Lazy Leader [Cold98] - The team leader involves himself in development to heavily and
therefor fulfills his management responsibility only when really urged to.

Acknowledgements Thanks to Prashant Jain, Egon Wuchner, Frank Buschmann, Markus Völter, for their
valuable comments on earlier versions of this pattern. Special thanks to Kevlin Henney, my
EuroPLoP shepherd, for his excellent comments.

References

[Auer96] Ken Auer: Lazy Optimization: Patterns for Efficient Smalltalk Programming, PLOPD 2, Addison-
Wesley, 1996

[Beck97] Kent Beck: Smalltalk Best Practices Patterns, Prentice Hall, 1997

[Cold98] Jens Coldewey: Lazy Leader Pattern, http://www.coldewey.com/publikationen/Management/
LazyLeader.8.html, 1998

[IrDA99] Microsoft: IrDA Protocol Overview, http://www.microsoft.com/hwdev/infrared/IrDAapps.htm,
November, 1999

[Jain02] P. Jain, Evictor Pattern, to be workshopped at Pattern Language of Programs conference, Allerton
Park, Illinois, USA, 2002

[JaKi00] Prashant Jain and Michael Kircher: Leasing Pattern, Pattern Language of Programs conference,
Allerton Park, Ilinois, USA, August 13-16, 2000

[JaSc97] Prashant Jain and Doug C. Schmidt: Service Configuratior - A Pattern for Dynamic Configuration of
Services, C++ Report, SIGS, Vol. 9, No. 6, June, 1997

[KiJa02] M. Kircher and P. Jain, Pooling Pattern, submitted to European Pattern Language of Programs
conference, Kloster Irsee, Germany, July 4-7, 2002

[Kirc02] M. Kircher, Eager Acquisition Pattern, submitted to European Pattern Language of Programs
conference, Kloster Irsee, Germany, July 4-7, 2002

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides: Design Patterns – Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995

[HeVi99] Michi Henning and Steve Vinoski: Advanced CORBA Programming with C++ - Evictor Pattern,
Addison-Wesley, 1999

[MoOh97] Peter Molin, and Lennar Ohlsson: The Points and Deviations Pattern Language of Fire Alarm
Systems - Lazy State Pattern, PLOPD 3, Addison-Wesley, 1997

[NoWe00] J. Noble, C. Weir, Small Memory Software - Variable Allocation Pattern, Addision-Wesley, 2000

[SSRBS00] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann: Pattern-Oriented Software Architecture—

Patterns for Concurrent and Distributed Objects, John Wiley and Sons, 2000
Copyright © 2001, Michael Kircher

