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Motivation for QoS-enabled Middleware
Trends

New Challenges
•Many mission-critical distributed applications 
require real-time QoS guarantees
•e.g., combat systems, online trading, telecom

•Building QoS-enabled applications manually is 
tedious, error-prone, & expensive

•Conventional middleware does not support real-
time QoS requirements effectively

Historical Challenges
•Building distributed systems is hard
•Building them on-time & under budget 
is even harder

•Hardware keeps getting smaller, faster, & cheaper
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•Software keeps getting larger, slower, & more expensive
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Overview of CORBA 
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•CORBA shields applications from 
heterogeneous platform dependencies
•e.g., languages, operating systems, 
networking protocols, hardware

•Common Object Request Broker 
Architecture (CORBA)

• A family of specifications
• OMG is the standards body
• Over 800 companies

•CORBA defines interfaces, not 
implementations

• It simplifies development of 
distributed applications by 
automating/encapsulating

• Object location
• Connection & memory mgmt.
• Parameter (de)marshaling
• Event & request demultiplexing
• Error handling & fault tolerance
• Object/server activation
• Concurrency
• Security
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Caveat: Requirements & Historical Limitations 
of CORBA for Real-time Systems

Requirements
•Location transparency
•Performance transparency
•Predictability transparency
•Reliability transparency

Historical Limitations
•Lack of QoS specifications
•Lack of QoS enforcement
•Lack of real-time programming features
•Lack of performance optimizations
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Real-Time CORBA Overview
• RT CORBA adds QoS control to 
regular CORBA improve the 
application predictability, e.g.,

• Bounding priority inversions & 
• Managing resources end-to-end

• Policies & mechanisms for 
resource configuration/control in 
RT-CORBA include:
1.Processor Resources

• Thread pools
• Priority models
• Portable priorities

2.Communication Resources
• Protocol policies
• Explicit binding

3.Memory Resources
• Request buffering

• These capabilities address some 
important real-time application 
development challenges
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Real-time CORBA leverages the CORBA 
Messaging QoS Policy framework
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Overview of the CORBA QoS Policy Framework

Default Policies
ORB Policy Overrides
Thread Policy Overrides

Object Policy Overrides

object->request (arguments);

•CORBA defines a QoS framework that includes policy management for 
request priority, queueing, message delivery quality,  timeouts, etc. 

•QoS is managed through interfaces derived from CORBA::Policy
•Each QoS Policy has an associated PolicyType that can be queried

•A PolicyList is sequence of policies 

•Server-side policies are specified by associating QoS policy objects with 
a POA 
• i.e., can be passed as arguments to POA::create_POA()

•Client-side QoS policies & overrides can be established & validated via
calls to Object::validate_connection() & other CORBA APIs

•Client-side policies are specified at 3 
“overriding levels”:
1. ORB-level through PolicyManager
2. Thread-level through PolicyCurrent
3. Object-level through overrides in an 

object reference
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Applying RT CORBA to Real-time Avionics

Key System Characteristics
•Deterministic & statistical deadlines

•~20 Hz
•Low latency & jitter 

•~250 usecs
•Periodic & aperiodic processing
•Complex dependencies
•Continuous platform upgrades

•Test flown at China Lake NAWS by Boeing 
OSAT II ‘98, funded by OS-JTF
• www.cs.wustl.edu/~schmidt/TAO-boeing.html

•Also used on SOFIA project by Raytheon
• sofia.arc.nasa.gov

•First use of RT CORBA in mission computing
•Drove Real-time CORBA standardization

•Test flown at China Lake NAWS by Boeing 
OSAT II ‘98, funded by OS-JTF
• www.cs.wustl.edu/~schmidt/TAO-boeing.html

•Also used on SOFIA project by Raytheon
• sofia.arc.nasa.gov

•First use of RT CORBA in mission computing
•Drove Real-time CORBA standardization

Key Results

Goals
•Apply COTS & open systems to mission-
critical real-time avionics
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Applying RT CORBA to Hot Rolling Mills
Goals
•Control the processing of molten 
steel moving through a hot rolling 
mill in real-time

System Characteristics
•Hard real-time process automation 
requirements
• i.e., 250 ms real-time cycles

•System acquires values 
representing plant’s current state, 
tracks material flow, calculates new 
settings for the rolls & devices, & 
submits new settings back to plant

Key Software Solution Characteristics
•Affordable, flexible, & COTS

•Product-line architecture
•Design guided by patterns & frameworks

•Affordable, flexible, & COTS
•Product-line architecture
•Design guided by patterns & frameworks

•Windows NT/2000
•Real-time CORBA

www.siroll.de
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Applying RT CORBA to Image Processing
Goals
•Examine glass bottles 
for defects in real-
time

System 
Characteristics
•Process 20 bottles 
per sec
• i.e., ~50 msec per 
bottle

•Networked 
configuration

•~10 cameras
Key Software Solution Characteristics
•Affordable, flexible, & COTS

•Embedded Linux (Lem)
•Compact PCI bus + Celeron processors

•Affordable, flexible, & COTS
•Embedded Linux (Lem)
•Compact PCI bus + Celeron processors

•Remote booted by DHCP/TFTP
•Real-time CORBA

www.krones.com
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Base Station

Missed
Deadline!

An Example Distributed Application
•Consider an application where 
cooperating drones explore a 
surface & report its properties 
periodically
•e.g., color, texture, etc.

•This is a simplification of various 
autonomous vehicle use-cases

•Drones aren’t very “smart,”
•e.g., they can fall off the “edge” of the 
surface if not stopped

•Thus, a controller is used to coordinate their 
actions
•e.g., it can order them to a new position
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Designing the Application
Base Station CPU

Drone CPU 1

 : Drone

 : Base_Station

Drone CPU 2

 : Drone

 : Controller : Controller
User

•End-users talk to a 
Base_Station object
• e.g., they define high-level 
exploration goals for the drones

•The Base_Station object 
controls the drones remotely using 
Drone objects
•Drone objects are proxies for the 
underlying drone vehicles
• e.g., they expose operations for 
controlling & monitoring individual 
drone behavior

•Each drone sends information obtained from its sensors back to the 
Base_Station via a Controller object
• This interaction is an example of Asynchronous Completion Token & 
Distributed Callback patterns
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Defining Application Interfaces with CORBA IDL
•Each Drone talks to one Controller

• e.g., Drones send hi-priority alarm 
messages when they detect an edge

•The Controller should take 
corrective action if a Drone detects it’s 
about to fall off an edge!

•The Base_Station interface is a 
Controller factory
•Drones use this interface to create their 
Controllers during power up

• End-users use this interface to set high-
level mobility targets

interface Drone {
void turn (in float degrees);
void speed (in short mph);
void reset_odometer ();
short odometer ();
// …

};

interface Controller {
void edge_alarm ();
void turn_completed ();

};

exception Lack_Resources {};

interface Base_Station {
Controller new_controller (in string name)
raises (Lack_Resources);

void set_new_target (in float x, in float y);
//……

};
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QoS-related Application Design Challenges
•Our example application contains the 
following QoS-related design challenges
1. Obtaining portable ORB end-system 

priorities
2. Preserving priorities end-to-end
3. Enforcing certain priorities at the server
4. Changing CORBA priorities
5. Supporting thread pools effectively
6. Buffering client requests
7. Synchronizing objects correctly
8. Configuring custom protocols
9. Controlling network & end-system 

resources to minimize priority inversion
10. Avoiding dynamic connections
11. Simplifying application scheduling
12. Controlling request timeouts

•The remainder of this tutorial illustrates how 
these challenges can be addressed by 
applying RT CORBA capabilities



University of California, Irvine
Siemens AG 14

D. Schmidt, M. Kircher QoS-enabled Middleware

•Problem: How to communicate priorities 
having different native OS priority 
ranges

•Solution: Standard RT CORBA priority 
mapping interfaces
•OS-independent design supports 
heterogeneous real-time platforms

•CORBA priorities are “globally” unique 
values that range from 0 to 32767

•Users can map CORBA priorities onto 
native OS priorities in custom ways

•No silver bullet, but rather an 
``enabling technique'‘
• i.e., can’t magically turn a general-
purpose OS into a real-time OS!

Obtaining Portable ORB End-system Priorities
ORB  ENDSYSTEM  A

32767

0
R

TC
O

R
BA

::Priority

0

255

ORB  ENDSYSTEM  B

0

31
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Priority Mapping Example

class MyPriorityMapping : public RTCORBA::PriorityMapping {
CORBA::Boolean to_native (RTCORBA::Priority corba_prio,

RTCORBA::NativePriority &native_prio)
{
native_prio = 128 + (corba_prio / 256);
// In the [128,256) range…
return true;

}

// Similar for CORBA::Boolean to_CORBA ();
};

•Define a priority mapping class that always uses native priorities in the range 
128-255
•e.g., this is the top half of LynxOS priorities

•Problem: How do we configure this new class?
•Solution: Use TAO’s PriorityMappingManager
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TAO’s PriorityMappingManager
• TAO provides an extension that uses a locality constrained object to configure the 
priority mapping:
CORBA::ORB_var orb = CORBA::ORB_init (argc, argv); // The ORB

// Get the PriorityMappingManager
CORBA::Object_var obj =

orb->resolve_initial_references (“PriorityMappingManager”);
TAO::PriorityMappingManager_var manager =

TAO::PriorityMappingManager::_narrow (obj);

// Create an instance of your mapping
RTCORBA::PriorityMapping *my_mapping =

new MyPriorityMapping;

// Install the new mapping
manager->mapping (my_mapping);

• It would be nice if this feature were standardized in RT CORBA…
•The current specification doesn’t standardize this in order to maximize 
ORB implementer options, e.g., link-time vs. run-time bindings
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Preserving Priorities End-to-End
• Problem: Requests could run 
at the wrong priority on the 
server
• e.g., this can cause major 
problems if edge_alarm()
operations are processed 
too late!!

• Solution: Use RT CORBA 
priority model policies
•SERVER_DECLARED

• Server handles requests at 
the priority declared when 
object was created

•CLIENT_PROPAGATED
• Request is executed at the 
priority requested by client 
(priority encoded as part of 
client request)
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Applying CLIENT_PROPAGATED
•Drones send critical messages to Controllers in the Base_Station
•edge_alarm() runs at the highest priority in the system
•turn_completed() runs at a lower priority in the system
CORBA::PolicyList policies (1); policies.length (1);
policies[0] = rtorb->create_priority_model_policy

(RTCORBA::CLIENT_PROPAGATED,
DEFAULT_PRIORITY /* For non-RT ORBs */);

// Create a POA with the correct policies
PortableServer::POA_var controller_poa =

root_poa->create_POA (“Controller_POA”,
PortableServer::POAManager::_nil (),
policies);

// Activate one Controller servant in <controller_poa>
controller_poa->activate_object (my_controller);
...
// Export object reference for <my_controller>

•Note how CLIENT_PROPAGATED policy is set on the server & exported 
to the client along with an object reference 
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Changing CORBA Priorities at the Client
•Problem: How can RT-CORBA client applications change the priority of 
operations?

•Solution: Use the RTCurrent to change the priority of the current thread 
explicitly 
• An RTCurrent can also be used to query the priority
• Values are expressed in the CORBA priority range
• Behavior of RTCurrent is thread-specific
// Get the ORB’s RTCurrent object
obj = orb->resolve_initial_references (“RTCurrent”);

RTCORBA::RTCurrent_var rt_current =
RTCORBA::RTCurrent::_narrow (obj);

// Change the current CORBA priority
rt_current->the_priority (VERY_HIGH_PRIORITY);

// Invoke the request at <VERY_HIGH_PRIORITY> priority
// The priority is propagated (see previous page)
controller->edge_alarm ();
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Design Interlude: The RTORB Interface

CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

CORBA::Object_var obj =
orb->resolve_initial_references (“RTORB”);

RTCORBA::RTORB_var rtorb =
RTCORBA::RTORB::_narrow (obj);

// Assuming this narrow succeeds we can henceforth use RT
// CORBA features

•Problem: How can the ORB be extended without changing the 
CORBA::ORB API?

•Solution: Use the Extension Interface pattern from POSA2
•Use resolve_initial_references() interface to obtain the extension
•Thus, non real-time ORBs and applications are not affected by RT CORBA 
enhancements!
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Applying SERVER_DECLARED
•Problem: Some operations must always be invoked at a fixed priority

• e.g., the Base_Station methods are not time-critical, so they should always run at 
lower priority than the Controller methods

•Solution: Use the RT CORBA SERVER_DECLARED priority model
CORBA::PolicyList policies (1); policies.length (1);
policies[0] = rtorb->create_priority_model_policy

(RTCORBA::SERVER_DECLARED, LOW_PRIORITY);

// Create a POA with the correct policies
PortableServer::POA_var base_station_poa =

root_poa->create_POA (“Base_Station_POA”,
PortableServer::POAManager::_nil (),
policies);

// Activate the <Base_Station> servant in <base_station_poa>
base_station_poa->activate_object (base_station);

•By default, SERVER_DECLARED objects inherit the priority of their RTPOA
• It’s possible to override this priority on a per-object basis, however!
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Extended RT POA Interface
•RT CORBA extends the POA interface via inheritance
module RTPortableServer {

local interface POA : PortableServer::POA {
PortableServer::ObjectId activate_object_with_priority
(in PortableServer::Servant servant_ptr,
in RTCORBA::Priority priority)

raises (ServantAlreadyActive, WrongPolicy);
// ...

};
•Methods in this interface can override default SERVER_DECLARED priorities
// Activate object with default priority of RTPOA
MyBase_Station *station = new MyBase_Station;
base_station_poa->activate_object (station);

// Activate another object with a specific priority
RTPortableServer::POA_var rt_poa =

RTPortableServer::POA::_narrow (base_station_poa);
rt_poa->activate_object_with_priority (another_servant,

ANOTHER_PRIORITY);
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Supporting Thread Pools Effectively
•Problem: Pre-allocating 
threading resources on the 
server portably & efficiently
• e.g., the Base_Station
must have sufficient threads 
for all its priority levels

•Solution: Use RT CORBA 
thread pools to configure 
server POAs to support
• Different levels of service
• Overlapping of computation 
& I/O

• Priority partitioning

Note that a thread pool can 
manage multiple POAs
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Creating & Destroying Thread Pools
interface RTCORBA::RTORB {

typedef unsigned long ThreadpoolId;

ThreadpoolId create_threadpool (
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

void destroy_threadpool (in ThreadpoolId threadpool)
raises (InvalidThreadpool);

};

There are factory 
methods for controlling 
the life-cycle of RT-
CORBA thread pools
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Creating Thread Pools with Lanes
•Problem: Exhaustion of threads by low priority requests

•e.g., many requests to the Base_Station methods use up all the threads 
in the thread pool so that no threads for high priority Controller methods 
are available

•Solution: Partition thread pool into subsets, which are called Lanes, each 
lane has a different priority 
interface RTCORBA::RTORB {

struct ThreadpoolLane {
Priority lane_priority;
unsigned long static_threads;
unsigned long dynamic_threads;

};
ThreadpoolId create_threadpool_with_lanes (

in unsigned long stacksize,
in ThreadpoolLanes lanes,
in boolean allow_borrowing
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size );

};

•It’s possible to “borrow” 
threads from lanes with 
lower priorities



University of California, Irvine
Siemens AG 26

D. Schmidt, M. Kircher QoS-enabled Middleware

Configuring Thread Pool Lanes
// Define two lanes
RTCORBA::ThreadpoolLane high_priority =
{ 10 /* Priority */,

3 /* Static Threads */,
0 /* Dynamic Threads */ };

RTCORBA::ThreadpoolLane low_priority =
{ 5 /* Priority */,

7 /* Static Threads */,
2 /* Dynamic Threads */};

RTCORBA::ThreadpoolLanes lanes(2); lanes.length(2);
lanes[0] = high_priority; lanes[1] = low_priority;

RTCORBA::ThreadpoolId pool_id =
rt_orb->create_threadpool_with_lanes (

1024 * 10, // Stacksize
lanes, // Thread pool lanes
false, // No thread borrowing
false, 0, 0); // No request buffering

When a thread pool is 
created it’s possible to 
control certain resource 
allocations 
•e.g., stacksize, request 
buffering, & whether or 
not to allow “borrowing” 
across lanes
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Installing Thread Pools on a RT-POA
// From previous page
RTCORBA::ThreadpoolId pool_id = // ...

// Create Thread Pool Policy
RTCORBA::ThreadpoolPolicy_var tp_policy =

rt_orb->create_threadpool_policy (pool_id);

// Create policy list for RT-POA
CORBA::PolicyList RTPOA_policies(1); RTPOA_policies.length (1);
RTPOA_policies[0] = tp_policy;

// Create POAs
PortableServer::POA_var rt_poa_1 =

root_poa->create_POA (“RT-POA_1”, // POA name
PortableServer::POAManager::_nil (),
RTPOA_policies); // POA policies

PortableServer::POA_var rt_poa_2 =
root_poa->create_POA (“RT-POA_2”, // POA name

PortableServer::POAManager::_nil (),
RTPOA_policies); // POA policies

Note how multiple RT 
POAs can share the 
same thread pools
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Thread Pools Implementation Strategies
•There are two general strategies to implement RT CORBA thread 
pools:
1.Use the Half-Sync/Half-Async pattern to have I/O thread(s) 

buffer client requests in a queue & then have worker threads in 
the pool process the requests

2.Use the Leader/Followers pattern to demultiplex I/O events into 
threads in the pool without requiring additional I/O threads

•Each strategy is appropriate for certain application domains
•e.g., certain hard-real time applications cannot incur the non-
determinism & priority inversion of additional request queues

•To evaluate each approach we must understand their 
consequences
•Their pattern descriptions capture this information
•Good metrics to compare RT-CORBA implementations
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The Half-Sync/Half-Async Pattern
Sync
Service
Layer

Async
Service 
Layer

Queueing
Layer

<<read/write>> <<read/write>>

<<read/write>>

<<dequeue/enqueue>> <<interrupt>>

Sync Service 1 Sync Service 2 Sync Service 3

External
Event Source

Queue

Async Service

Intent
The Half-Sync/Half-Async
architectural pattern 
decouples async & sync 
service processing in 
concurrent systems, to 
simplify programming 
without unduly reducing 
performance

• This pattern defines two service 
processing layers—one async and 
one sync—along with a queueing 
layer that allows services to 
exchange messages between the 
two layers

• The pattern allows sync services, 
such as servant processing, to run 
concurrently, relative both to each 
other and to async services, such as 
I/O handling & event demultiplexing 

work()

notification

: External Event
Source

: Async Service : Queue

notification

read()

enqueue()

message

: Sync Service

work()

message

read()

message
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Queue-per-Lane Thread Pool Design
Design Overview

• Single acceptor endpoint 
• One reactor for each priority level
• Each lane has a queue 
• I/O & application-level request 
processing are in different threads

Pros
• Better feature support, e.g.,

• Request buffering
• Thread borrowing

• Better scalability, e.g.,
• Single acceptor
• Fewer reactors
• Smaller IORs

• Easier piece-by-piece integration into 
the ORB

Cons
• Less efficient because of queuing
• Predictability reduced without 
_bind_priority_band() implicit 
operation
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The Leader/Followers Pattern
Intent
The Leader/Followers architectural 
pattern provides an efficient 
concurrency model where multiple 
threads take turns sharing event 
sources to detect, demux, dispatch, & 
process service requests that occur on 
the event sources 

TCP Sockets + 
select()/poll()

UDP Sockets + 
select()/poll()

Iterative 
Handle Sets

TCP Sockets + 
WaitForMultple

Objects()

UDP Sockets + 
WaitForMultiple

Objects()

Concurrent 
Handle Sets

Iterative HandlesConcurrent Handles
Handles

Handle 
Sets

Handle uses

demultiplexes

*

*

Handle Set
handle_events()
deactivate_handle()
reactivate_handle()
select()

Event Handler
handle_event ()
get_handle()

Concrete Event 
Handler B

handle_event ()
get_handle()

Concrete Event 
Handler A

handle_event ()
get_handle()

Thread Pool

join()
promote_new_leader()

synchronizer
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Reactor-per-Lane Thread Pool Design
Design Overview
•Each lane has its own set of 
resources
• i.e., reactor, acceptor 
endpoint, etc.

• I/O & application-level request 
processing are done in the 
same thread

Pros
•Better performance

•No context switches
•Stack & TSS optimizations

•No priority inversions during 
connection establishment

•Control over all threads with 
standard thread pool API

Cons
•Harder ORB implementation
•Many endpoints = longer IORs
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Buffering Client Requests

SERVER ORB COREI/O
THREADS

Thead Pool A

PRIORITY 10 PRIORITY 35 PRIORITY 20

Thead Pool B

•Solution: Buffer client requests in 
ORB

•RT CORBA thread pool buffer 
capacities can be configured 
according to:
1. Maximum number of bytes 

and/or
2. Maximum number of requests

•Problem: Some types of 
applications need more buffering 
than is provided by the OS I/O 
subsystem
•e.g., to handle “bursty” client 
traffic
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Configuring Request Buffering
// Create a thread pool with buffering
RTCORBA::ThreadpoolId pool_id =

rt_orb->create_threadpool (1024 * 10, // Stacksize
true, // Enable buffering
128, // Maximum messages
64 * 1024); // Maximum buffering

// Create Thread Pool Policy
RTCORBA::ThreadpoolPolicy_var tp_policy =

rt_orb->create_threadpool_policy (pool_id);

// Use that policy to configure the RT-POA

•Since some RT ORBs don’t use queues to avoid priority inversions, an ORB 
can reject a request to create a thread pool with buffers
•This design is still compliant, however, since the maximum buffer capacity 
is always 0

•Moreover, queueing can be done within the I/O subsystem of the OS
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•Problem: An ORB & application may 
need to use the same type of mutex 
to avoid priority inversions
• e.g., using priority ceiling or priority 
inheritance protocols

•Solution: Use the 
RTCORBA::Mutex interface to 
ensure that consistent mutex 
semantics are enforced across ORB 
& application domains

Synchronizing Objects Consistently

RTCORBA::Mutex_var mutex = rtorb->create_mutex ();
...
mutex->lock ();
// Critical section here…
mutex->unlock ();
...
rtorb->destroy_mutex (mutex);

CLIENT

Mutex
lock()
unlock()
try_lock()

ORB  CORE

OBJECT
ADAPTER

OBJECT
(SERVANT)

mutex3

mutex2

mutex4

mutex1

create_mutex()
is a factory method
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Configuring Custom Protocols
•Problems: Selecting communication protocol(s) is crucial to obtaining QoS

• TCP/IP is inadequate to provide end-to-end real-time response
• Thus, communication between Base_Station, Controllers, & Drones must 
use a different protocol
• e.g., VME, 1553, shared memory, VIA, firewire, bluetooth, etc.

• Moreover, communication between Drone & Controller cannot be queued
•Solution: Protocol selection 
policies
• Both server-side & client-side 
policies are supported

• Some policies control protocol 
selection, others configuration

• Order of protocols indicates 
protocol preference

• Some policies are exported to 
client in object reference

Ironically, RT-CORBA specifies 
only protocol properties for TCP!
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Example: Configuring protocols
•First, we create the protocol properties

RTCORBA::ProtocolList plist; plist.length (2);
plist[0].protocol_type = MY_PROTOCOL_TAG; // Custom protocol
plist[0].trans_protocol_props =

/* Use ORB proprietary interface */
plist[1].protocol_type = IOP::TAG_INTERNET_IOP; // IIOP
plist[1].trans_protocol_props = tcp_properties;
RTCORBA::ClientProtocolPolicy_ptr policy =

rtorb->create_client_protocol_policy (plist);

•Next, we configure the list of protocols to use

RTCORBA::ProtocolProperties_var tcp_properties =
rtorb->create_tcp_protocol_properties (

64 * 1024, /* send buffer */
64 * 1024, /* recv buffer */
false, /* keep alive */
true, /* dont_route */
true /* no_delay */);
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Controlling Network Resources
•Problems: 

•Avoiding request-level (“head-of-line”) 
priority inversions

•Minimizing thread-level priority inversions
•Control jitter due to connection 
establishment

•Solution: Use explicit 
binding mechanisms, e.g.,
•Connection pre-allocation

•Eliminates a common 
source of operation jitter

•Priority Banded 
Connection Policy
• Invocation priority 
determines which 
connection is used

•Private Connection Policy
•Guarantees non-
multiplexed connectionsORB CORE

stop() turn() query_state()

query_state()turn()stop()

OBJ REF

prio
200

prio
200

prio
100 Controller

Drone
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Pre-allocating Network Connections
•Problem: Dynamically establishing connections from the base station 
to/from the drones can result in unacceptable jitter, which can be 
detrimental to time-critical applications

•Solution: Pre-allocate one or more connections using the 
Object::_validate_connection() operation, which is defined in the 
CORBA Message specification
Drone_var drone = …; // Obtain reference to a drone

// Pre-establish connections using current policy overrides
CORBA::PolicyList_var inconsistent_policies;

// The following operation causes a _bind_priority_band()
// “implicit” request to be sent to the server
CORBA::Boolean successful =

drone->_validate_connection (inconsistent_policies);
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Priority Banded Connection Policy
•Problem: To minimize priority inversions, high-priority operations 
should not be queued behind low-priority operations

•Solution: Use different connections for different priority ranges via 
the RT CORBA PriorityBandedConnectionPolicy

`

query_state()

stop()

ORB CORE

stop() turn() query_state()

OBJ REF

prio
200

prio
200

prio
100

turn()
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Private Connection Policy
•Problem: To minimize priority 
inversions, some applications 
cannot share a connection 
between multiple objects
•e.g., sending a stop() request 
should use exclusive, pre-allocated 
resources

•Solution: Use the RT CORBA 
PrivateConnectionPolicy
to guarantee non-multiplexed 
connections

`

query_state()

stop()

ORB CORE

stop() turn() query_state()

OBJ REF

prio
200

prio
200

prio
100

OBJ REF

`

turn()
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Simplifying Application Scheduling
•Problem: Although RT-CORBA gives developers control over system 
resources it has two deficiencies:
•It can be tedious to configure all the various policies
•Application developer must select the right priority values

•Solution: Apply the RT-CORBA Scheduling Service to simplify application 
scheduling 
•Developers just declare the current activity
•Properties of an activity are specified using an (unspecified) external tool
•Note that the Scheduling Service is an optional part of the RT-CORBA 1.0 
specification

// Find the scheduling service
RTCosScheduling::ClientScheduler_var scheduler = … ;

// Schedule the ‘edge_alarm’ activity
scheduler->schedule_activity (“edge_alarm”);

controller->edge_alarm ();

The client-side 
programming model
Is simple
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Server-side Scheduling
// Obtain a reference to the scheduling service
RTCosScheduling::ServerScheduler_var scheduler = … ;

CORBA::PolicyList policies; // Set POA policies

// The scheduling service configures the RT policies
PortableServer::POA_var rt_poa = scheduler->create_POA

(“ControllerPOA”,
PortableServer::POAManager::_nil (),
policies);

// Activate the servant, and obtain a reference to it.
rt_poa->activate_servant (my_controller);
CORBA::Object_var controller =

rt_poa->servant_to_reference (my_controller);

// Configure the resources required for this object
// e.g., setup interceptors to control priorities
scheduler->schedule_object (controller, “CTRL_000”);

Servers can also be 
configured using the
Scheduling Service
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Other Relevant CORBA Features
•RT CORBA leverages other advanced CORBA features to provide a more 
comprehensive QoS-enabled ORB middleware solution, e.g.:
• Timeouts: CORBA Messaging 
provides policies to control roundtrip 
timeouts

• Reliable oneways: which are also 
part of CORBA Messaging

• Asynchronous invocations: CORBA 
Messaging includes support for type-
safe asynchronous method invocation 
(AMI)

• Real-time analysis & scheduling: 
The RT CORBA 1.0 Scheduling 
Service is an optional compliance 
point for this purpose
• However, most of the problem is left 
for an external tool

• Enhanced views of time: Defines 
interfaces to control & query “clocks” 
(orbos/1999-10-02)

• RT Notification Service: Currently in 
progress in the OMG (orbos/00-06-
10), looks for RT-enhanced 
Notification Service

• Dynamic Scheduling: Currently in 
progress in the OMG (orbos/98-02-
15) to address additional policies for 
dynamic & hybrid static/dynamic 
scheduling
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Controlling Request Timeouts
•Problem: Our Controller object should not block indefinitely when trying 
to stop a drone that’s fallen off an edge!

•Solution: Override the timeout policy in the Drone object reference
// 10 milliseconds (base units are 100 nanosecs)
CORBA::Any val; val <<= TimeBase::TimeT (100000UL);

// Create the timeout policy
CORBA::PolicyList policies (1); policies.length (1);
policies[0] = orb->create_policy

(Messaging::RELATIVE_RT_TIMEOUT_POLICY_TYPE, val);

// Override the policy in the drone
CORBA::Object_var obj = drone->_set_policy_overrides

(policies, CORBA::ADD_OVERRIDE);

Drone_var drone_with_timeout = Drone::_narrow (obj);
try { drone_with_timeout->speed (0); }
catch (CORBA::TIMEOUT e) { // Handle exception }
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Reliable Oneways
• Problem: The oneway semantics are not precise 

enough for Real-time applications
• Solution: Use the SyncScope policy to control it.

Network

Client Object
(Servant)

ORB CORE

oneway_request()

SY
N

C
_N

O
N

E

SY
N

C
_W

IT
H

_T
R

A
N

SP
O

R
T

SY
N

C
_W

IT
H

_T
A

R
G

ET

SY
N

C
_W

IT
H

_S
ER

VE
R

Object Adapter



University of California, Irvine
Siemens AG 47

D. Schmidt, M. Kircher QoS-enabled Middleware

Open Issues with the Real-Time 
CORBA Specification

1.No standard APIs for setting & getting priority mappings & priority 
transforms

2.No compelling use-cases for server-set client protocol policies
3.Semantic ambiguities

•Valid policy configurations & their semantics
• e.g., should a protocol property affect all endpoints or just some?

•Resource definition & allocation
•Mapping of threads to connection endpoints on the server 

4.The bounds on priority inversions is a quality of implementation
•No requirement for I/O threads to run at the same priority as request 
processing threads

Bottom-line: RT CORBA applications remain 
dependant on implementation details
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Additional Information
•CORBA 2.4 specification (includes RT-CORBA)
•www.omg.org/technology/documents/formal/corbaiiop.htm

•Patterns for concurrent & networked objects
•www.posa.uci.edu

•ACE & TAO open-source middleware
•www.cs.wustl.edu/~schmidt/ACE.html
•www.cs.wustl.edu/~schmidt/TAO.html

•CORBA research papers
•www.cs.wustl.edu/~schmidt/corba-research.html

•CORBA tutorials
•www.cs.wustl.edu/~schmidt/tutorials-corba.html
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R&D User
Needs

Standard
COTS

R&D

Concluding Remarks
• RT CORBA 1.0 is a major step forward for 
QoS-enabled middleware
• e.g., it introduces important capabilities to 

manage key ORB end-system/network 
resources

• We expect that these new capabilities will 
increase interest in--and applicability of--
CORBA for distributed real-time & 
embedded systems

• RT CORBA 1.0 doesn’t solve all real-time 
development problems, however 

• It lacks important features:
• Standard priority mapping manager
• Dynamic scheduling

• Addressed in RT CORBA 2.0
• Portions of spec are under-specified

• Thus, developers must be familiar with the 
implementation decisions made by their 
RT ORB

• Our work on TAO has helped advance 
middleware for distributed real-time & 
embedded systems by implementing RT 
CORBA in an open-source ORB & 
providing feedback to users & OMG
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