
Saturday, May 12, 2001

Using Real-time CORBA Effectively
Patterns & Principles

Michael Kircher
Michael.Kircher@mchp.siemens.de

Siemens AG,
Corporate Technology

This talk is based on material based on Doug Schmidt,
Irfan Pyarali, and Carlos O’Ryan

University of California, Irvine
Siemens AG 2

D. Schmidt, M. Kircher QoS-enabled Middleware

Motivation for QoS-enabled Middleware
Trends

New Challenges
•Many mission-critical distributed applications
require real-time QoS guarantees
•e.g., combat systems, online trading, telecom

•Building QoS-enabled applications manually is
tedious, error-prone, & expensive

•Conventional middleware does not support real-
time QoS requirements effectively

Historical Challenges
•Building distributed systems is hard
•Building them on-time & under budget
is even harder

•Hardware keeps getting smaller, faster, & cheaper

1 1
Proxy

service

Service

service

AbstractService

service

Client

•Software keeps getting larger, slower, & more expensive

University of California, Irvine
Siemens AG 3

D. Schmidt, M. Kircher QoS-enabled Middleware

Overview of CORBA
Interface

Repository
IDL

Compiler
Implementation

Repository

Client OBJ
REF

Object
(Servant)

in args
operation()
out args +

return

DII IDL
STUBS

ORB
INTERFACE

IDL
SKEL DSI

Object Adapter

ORB CORE GIOP/IIOP/ESIOPS

•CORBA shields applications from
heterogeneous platform dependencies
•e.g., languages, operating systems,
networking protocols, hardware

•Common Object Request Broker
Architecture (CORBA)

• A family of specifications
• OMG is the standards body
• Over 800 companies

•CORBA defines interfaces, not
implementations

• It simplifies development of
distributed applications by
automating/encapsulating

• Object location
• Connection & memory mgmt.
• Parameter (de)marshaling
• Event & request demultiplexing
• Error handling & fault tolerance
• Object/server activation
• Concurrency
• Security

University of California, Irvine
Siemens AG 4

D. Schmidt, M. Kircher QoS-enabled Middleware

Caveat: Requirements & Historical Limitations
of CORBA for Real-time Systems

Requirements
•Location transparency
•Performance transparency
•Predictability transparency
•Reliability transparency

Historical Limitations
•Lack of QoS specifications
•Lack of QoS enforcement
•Lack of real-time programming features
•Lack of performance optimizations

NETWORK
OPERATIONS

CENTER

HSM
ARCHIVE
SERVER

AGENT

INTERACTIVE
AUDIO/VIDEO

AGENT ARCHITECTURE

SPC
HARDWARE

EMBEDDED
TAO

MIB

AGENT

University of California, Irvine
Siemens AG 5

D. Schmidt, M. Kircher QoS-enabled Middleware

Real-Time CORBA Overview
• RT CORBA adds QoS control to
regular CORBA improve the
application predictability, e.g.,

• Bounding priority inversions &
• Managing resources end-to-end

• Policies & mechanisms for
resource configuration/control in
RT-CORBA include:
1.Processor Resources

• Thread pools
• Priority models
• Portable priorities

2.Communication Resources
• Protocol policies
• Explicit binding

3.Memory Resources
• Request buffering

• These capabilities address some
important real-time application
development challenges

Client OBJ
REF

Object
(Servant)

in args
operation()

out args + return

IDL
STUBS

IDL
SKEL

Object Adapter

ORB CORE GIOP

Protocol Properties

End-to-End Priority
Propagation

Thread
Pools

Standard
SynchronizersExplicit

Binding
Portable Priorities

Scheduling
Service

Real-time CORBA leverages the CORBA
Messaging QoS Policy framework

University of California, Irvine
Siemens AG 6

D. Schmidt, M. Kircher QoS-enabled Middleware

Overview of the CORBA QoS Policy Framework

Default Policies
ORB Policy Overrides
Thread Policy Overrides

Object Policy Overrides

object->request (arguments);

•CORBA defines a QoS framework that includes policy management for
request priority, queueing, message delivery quality, timeouts, etc.

•QoS is managed through interfaces derived from CORBA::Policy
•Each QoS Policy has an associated PolicyType that can be queried

•A PolicyList is sequence of policies

•Server-side policies are specified by associating QoS policy objects with
a POA
• i.e., can be passed as arguments to POA::create_POA()

•Client-side QoS policies & overrides can be established & validated via
calls to Object::validate_connection() & other CORBA APIs

•Client-side policies are specified at 3
“overriding levels”:
1. ORB-level through PolicyManager
2. Thread-level through PolicyCurrent
3. Object-level through overrides in an

object reference

University of California, Irvine
Siemens AG 7

D. Schmidt, M. Kircher QoS-enabled Middleware

Applying RT CORBA to Real-time Avionics

Key System Characteristics
•Deterministic & statistical deadlines

•~20 Hz
•Low latency & jitter

•~250 usecs
•Periodic & aperiodic processing
•Complex dependencies
•Continuous platform upgrades

•Test flown at China Lake NAWS by Boeing
OSAT II ‘98, funded by OS-JTF
• www.cs.wustl.edu/~schmidt/TAO-boeing.html

•Also used on SOFIA project by Raytheon
• sofia.arc.nasa.gov

•First use of RT CORBA in mission computing
•Drove Real-time CORBA standardization

•Test flown at China Lake NAWS by Boeing
OSAT II ‘98, funded by OS-JTF
• www.cs.wustl.edu/~schmidt/TAO-boeing.html

•Also used on SOFIA project by Raytheon
• sofia.arc.nasa.gov

•First use of RT CORBA in mission computing
•Drove Real-time CORBA standardization

Key Results

Goals
•Apply COTS & open systems to mission-
critical real-time avionics

University of California, Irvine
Siemens AG 8

D. Schmidt, M. Kircher QoS-enabled Middleware

Applying RT CORBA to Hot Rolling Mills
Goals
•Control the processing of molten
steel moving through a hot rolling
mill in real-time

System Characteristics
•Hard real-time process automation
requirements
• i.e., 250 ms real-time cycles

•System acquires values
representing plant’s current state,
tracks material flow, calculates new
settings for the rolls & devices, &
submits new settings back to plant

Key Software Solution Characteristics
•Affordable, flexible, & COTS

•Product-line architecture
•Design guided by patterns & frameworks

•Affordable, flexible, & COTS
•Product-line architecture
•Design guided by patterns & frameworks

•Windows NT/2000
•Real-time CORBA

www.siroll.de

University of California, Irvine
Siemens AG 9

D. Schmidt, M. Kircher QoS-enabled Middleware

Applying RT CORBA to Image Processing
Goals
•Examine glass bottles
for defects in real-
time

System
Characteristics
•Process 20 bottles
per sec
• i.e., ~50 msec per
bottle

•Networked
configuration

•~10 cameras
Key Software Solution Characteristics
•Affordable, flexible, & COTS

•Embedded Linux (Lem)
•Compact PCI bus + Celeron processors

•Affordable, flexible, & COTS
•Embedded Linux (Lem)
•Compact PCI bus + Celeron processors

•Remote booted by DHCP/TFTP
•Real-time CORBA

www.krones.com

University of California, Irvine
Siemens AG 10

D. Schmidt, M. Kircher QoS-enabled Middleware

Base Station

Missed
Deadline!

An Example Distributed Application
•Consider an application where
cooperating drones explore a
surface & report its properties
periodically
•e.g., color, texture, etc.

•This is a simplification of various
autonomous vehicle use-cases

•Drones aren’t very “smart,”
•e.g., they can fall off the “edge” of the
surface if not stopped

•Thus, a controller is used to coordinate their
actions
•e.g., it can order them to a new position

University of California, Irvine
Siemens AG 11

D. Schmidt, M. Kircher QoS-enabled Middleware

Designing the Application
Base Station CPU

Drone CPU 1

 : Drone

 : Base_Station

Drone CPU 2

 : Drone

 : Controller : Controller
User

•End-users talk to a
Base_Station object
• e.g., they define high-level
exploration goals for the drones

•The Base_Station object
controls the drones remotely using
Drone objects
•Drone objects are proxies for the
underlying drone vehicles
• e.g., they expose operations for
controlling & monitoring individual
drone behavior

•Each drone sends information obtained from its sensors back to the
Base_Station via a Controller object
• This interaction is an example of Asynchronous Completion Token &
Distributed Callback patterns

e
d
g
e
_
a
l
a
r
m
(
)

s
p
e
e
d
(
)

University of California, Irvine
Siemens AG 12

D. Schmidt, M. Kircher QoS-enabled Middleware

Defining Application Interfaces with CORBA IDL
•Each Drone talks to one Controller

• e.g., Drones send hi-priority alarm
messages when they detect an edge

•The Controller should take
corrective action if a Drone detects it’s
about to fall off an edge!

•The Base_Station interface is a
Controller factory
•Drones use this interface to create their
Controllers during power up

• End-users use this interface to set high-
level mobility targets

interface Drone {
void turn (in float degrees);
void speed (in short mph);
void reset_odometer ();
short odometer ();
// …

};

interface Controller {
void edge_alarm ();
void turn_completed ();

};

exception Lack_Resources {};

interface Base_Station {
Controller new_controller (in string name)
raises (Lack_Resources);

void set_new_target (in float x, in float y);
//……

};

University of California, Irvine
Siemens AG 13

D. Schmidt, M. Kircher QoS-enabled Middleware

QoS-related Application Design Challenges
•Our example application contains the
following QoS-related design challenges
1. Obtaining portable ORB end-system

priorities
2. Preserving priorities end-to-end
3. Enforcing certain priorities at the server
4. Changing CORBA priorities
5. Supporting thread pools effectively
6. Buffering client requests
7. Synchronizing objects correctly
8. Configuring custom protocols
9. Controlling network & end-system

resources to minimize priority inversion
10. Avoiding dynamic connections
11. Simplifying application scheduling
12. Controlling request timeouts

•The remainder of this tutorial illustrates how
these challenges can be addressed by
applying RT CORBA capabilities

University of California, Irvine
Siemens AG 14

D. Schmidt, M. Kircher QoS-enabled Middleware

•Problem: How to communicate priorities
having different native OS priority
ranges

•Solution: Standard RT CORBA priority
mapping interfaces
•OS-independent design supports
heterogeneous real-time platforms

•CORBA priorities are “globally” unique
values that range from 0 to 32767

•Users can map CORBA priorities onto
native OS priorities in custom ways

•No silver bullet, but rather an
``enabling technique'‘
• i.e., can’t magically turn a general-
purpose OS into a real-time OS!

Obtaining Portable ORB End-system Priorities
ORB ENDSYSTEM A

32767

0
R

TC
O

R
BA

::Priority

0

255

ORB ENDSYSTEM B

0

31

University of California, Irvine
Siemens AG 15

D. Schmidt, M. Kircher QoS-enabled Middleware

Priority Mapping Example

class MyPriorityMapping : public RTCORBA::PriorityMapping {
CORBA::Boolean to_native (RTCORBA::Priority corba_prio,

RTCORBA::NativePriority &native_prio)
{
native_prio = 128 + (corba_prio / 256);
// In the [128,256) range…
return true;

}

// Similar for CORBA::Boolean to_CORBA ();
};

•Define a priority mapping class that always uses native priorities in the range
128-255
•e.g., this is the top half of LynxOS priorities

•Problem: How do we configure this new class?
•Solution: Use TAO’s PriorityMappingManager

University of California, Irvine
Siemens AG 16

D. Schmidt, M. Kircher QoS-enabled Middleware

TAO’s PriorityMappingManager
• TAO provides an extension that uses a locality constrained object to configure the
priority mapping:
CORBA::ORB_var orb = CORBA::ORB_init (argc, argv); // The ORB

// Get the PriorityMappingManager
CORBA::Object_var obj =

orb->resolve_initial_references (“PriorityMappingManager”);
TAO::PriorityMappingManager_var manager =

TAO::PriorityMappingManager::_narrow (obj);

// Create an instance of your mapping
RTCORBA::PriorityMapping *my_mapping =

new MyPriorityMapping;

// Install the new mapping
manager->mapping (my_mapping);

• It would be nice if this feature were standardized in RT CORBA…
•The current specification doesn’t standardize this in order to maximize
ORB implementer options, e.g., link-time vs. run-time bindings

University of California, Irvine
Siemens AG 17

D. Schmidt, M. Kircher QoS-enabled Middleware

Preserving Priorities End-to-End
• Problem: Requests could run
at the wrong priority on the
server
• e.g., this can cause major
problems if edge_alarm()
operations are processed
too late!!

• Solution: Use RT CORBA
priority model policies
•SERVER_DECLARED

• Server handles requests at
the priority declared when
object was created

•CLIENT_PROPAGATED
• Request is executed at the
priority requested by client
(priority encoded as part of
client request)

University of California, Irvine
Siemens AG 18

D. Schmidt, M. Kircher QoS-enabled Middleware

Applying CLIENT_PROPAGATED
•Drones send critical messages to Controllers in the Base_Station
•edge_alarm() runs at the highest priority in the system
•turn_completed() runs at a lower priority in the system
CORBA::PolicyList policies (1); policies.length (1);
policies[0] = rtorb->create_priority_model_policy

(RTCORBA::CLIENT_PROPAGATED,
DEFAULT_PRIORITY /* For non-RT ORBs */);

// Create a POA with the correct policies
PortableServer::POA_var controller_poa =

root_poa->create_POA (“Controller_POA”,
PortableServer::POAManager::_nil (),
policies);

// Activate one Controller servant in <controller_poa>
controller_poa->activate_object (my_controller);
...
// Export object reference for <my_controller>

•Note how CLIENT_PROPAGATED policy is set on the server & exported
to the client along with an object reference

University of California, Irvine
Siemens AG 19

D. Schmidt, M. Kircher QoS-enabled Middleware

Changing CORBA Priorities at the Client
•Problem: How can RT-CORBA client applications change the priority of
operations?

•Solution: Use the RTCurrent to change the priority of the current thread
explicitly
• An RTCurrent can also be used to query the priority
• Values are expressed in the CORBA priority range
• Behavior of RTCurrent is thread-specific
// Get the ORB’s RTCurrent object
obj = orb->resolve_initial_references (“RTCurrent”);

RTCORBA::RTCurrent_var rt_current =
RTCORBA::RTCurrent::_narrow (obj);

// Change the current CORBA priority
rt_current->the_priority (VERY_HIGH_PRIORITY);

// Invoke the request at <VERY_HIGH_PRIORITY> priority
// The priority is propagated (see previous page)
controller->edge_alarm ();

University of California, Irvine
Siemens AG 20

D. Schmidt, M. Kircher QoS-enabled Middleware

Design Interlude: The RTORB Interface

CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

CORBA::Object_var obj =
orb->resolve_initial_references (“RTORB”);

RTCORBA::RTORB_var rtorb =
RTCORBA::RTORB::_narrow (obj);

// Assuming this narrow succeeds we can henceforth use RT
// CORBA features

•Problem: How can the ORB be extended without changing the
CORBA::ORB API?

•Solution: Use the Extension Interface pattern from POSA2
•Use resolve_initial_references() interface to obtain the extension
•Thus, non real-time ORBs and applications are not affected by RT CORBA
enhancements!

University of California, Irvine
Siemens AG 21

D. Schmidt, M. Kircher QoS-enabled Middleware

Applying SERVER_DECLARED
•Problem: Some operations must always be invoked at a fixed priority

• e.g., the Base_Station methods are not time-critical, so they should always run at
lower priority than the Controller methods

•Solution: Use the RT CORBA SERVER_DECLARED priority model
CORBA::PolicyList policies (1); policies.length (1);
policies[0] = rtorb->create_priority_model_policy

(RTCORBA::SERVER_DECLARED, LOW_PRIORITY);

// Create a POA with the correct policies
PortableServer::POA_var base_station_poa =

root_poa->create_POA (“Base_Station_POA”,
PortableServer::POAManager::_nil (),
policies);

// Activate the <Base_Station> servant in <base_station_poa>
base_station_poa->activate_object (base_station);

•By default, SERVER_DECLARED objects inherit the priority of their RTPOA
• It’s possible to override this priority on a per-object basis, however!

University of California, Irvine
Siemens AG 22

D. Schmidt, M. Kircher QoS-enabled Middleware

Extended RT POA Interface
•RT CORBA extends the POA interface via inheritance
module RTPortableServer {

local interface POA : PortableServer::POA {
PortableServer::ObjectId activate_object_with_priority
(in PortableServer::Servant servant_ptr,
in RTCORBA::Priority priority)

raises (ServantAlreadyActive, WrongPolicy);
// ...

};
•Methods in this interface can override default SERVER_DECLARED priorities
// Activate object with default priority of RTPOA
MyBase_Station *station = new MyBase_Station;
base_station_poa->activate_object (station);

// Activate another object with a specific priority
RTPortableServer::POA_var rt_poa =

RTPortableServer::POA::_narrow (base_station_poa);
rt_poa->activate_object_with_priority (another_servant,

ANOTHER_PRIORITY);

University of California, Irvine
Siemens AG 23

D. Schmidt, M. Kircher QoS-enabled Middleware

Supporting Thread Pools Effectively
•Problem: Pre-allocating
threading resources on the
server portably & efficiently
• e.g., the Base_Station
must have sufficient threads
for all its priority levels

•Solution: Use RT CORBA
thread pools to configure
server POAs to support
• Different levels of service
• Overlapping of computation
& I/O

• Priority partitioning

Note that a thread pool can
manage multiple POAs

University of California, Irvine
Siemens AG 24

D. Schmidt, M. Kircher QoS-enabled Middleware

Creating & Destroying Thread Pools
interface RTCORBA::RTORB {

typedef unsigned long ThreadpoolId;

ThreadpoolId create_threadpool (
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

void destroy_threadpool (in ThreadpoolId threadpool)
raises (InvalidThreadpool);

};

There are factory
methods for controlling
the life-cycle of RT-
CORBA thread pools

University of California, Irvine
Siemens AG 25

D. Schmidt, M. Kircher QoS-enabled Middleware

Creating Thread Pools with Lanes
•Problem: Exhaustion of threads by low priority requests

•e.g., many requests to the Base_Station methods use up all the threads
in the thread pool so that no threads for high priority Controller methods
are available

•Solution: Partition thread pool into subsets, which are called Lanes, each
lane has a different priority
interface RTCORBA::RTORB {

struct ThreadpoolLane {
Priority lane_priority;
unsigned long static_threads;
unsigned long dynamic_threads;

};
ThreadpoolId create_threadpool_with_lanes (

in unsigned long stacksize,
in ThreadpoolLanes lanes,
in boolean allow_borrowing
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

};

•It’s possible to “borrow”
threads from lanes with
lower priorities

University of California, Irvine
Siemens AG 26

D. Schmidt, M. Kircher QoS-enabled Middleware

Configuring Thread Pool Lanes
// Define two lanes
RTCORBA::ThreadpoolLane high_priority =
{ 10 /* Priority */,

3 /* Static Threads */,
0 /* Dynamic Threads */ };

RTCORBA::ThreadpoolLane low_priority =
{ 5 /* Priority */,

7 /* Static Threads */,
2 /* Dynamic Threads */};

RTCORBA::ThreadpoolLanes lanes(2); lanes.length(2);
lanes[0] = high_priority; lanes[1] = low_priority;

RTCORBA::ThreadpoolId pool_id =
rt_orb->create_threadpool_with_lanes (

1024 * 10, // Stacksize
lanes, // Thread pool lanes
false, // No thread borrowing
false, 0, 0); // No request buffering

When a thread pool is
created it’s possible to
control certain resource
allocations
•e.g., stacksize, request
buffering, & whether or
not to allow “borrowing”
across lanes

University of California, Irvine
Siemens AG 27

D. Schmidt, M. Kircher QoS-enabled Middleware

Installing Thread Pools on a RT-POA
// From previous page
RTCORBA::ThreadpoolId pool_id = // ...

// Create Thread Pool Policy
RTCORBA::ThreadpoolPolicy_var tp_policy =

rt_orb->create_threadpool_policy (pool_id);

// Create policy list for RT-POA
CORBA::PolicyList RTPOA_policies(1); RTPOA_policies.length (1);
RTPOA_policies[0] = tp_policy;

// Create POAs
PortableServer::POA_var rt_poa_1 =

root_poa->create_POA (“RT-POA_1”, // POA name
PortableServer::POAManager::_nil (),
RTPOA_policies); // POA policies

PortableServer::POA_var rt_poa_2 =
root_poa->create_POA (“RT-POA_2”, // POA name

PortableServer::POAManager::_nil (),
RTPOA_policies); // POA policies

Note how multiple RT
POAs can share the
same thread pools

University of California, Irvine
Siemens AG 28

D. Schmidt, M. Kircher QoS-enabled Middleware

Thread Pools Implementation Strategies
•There are two general strategies to implement RT CORBA thread
pools:
1.Use the Half-Sync/Half-Async pattern to have I/O thread(s)

buffer client requests in a queue & then have worker threads in
the pool process the requests

2.Use the Leader/Followers pattern to demultiplex I/O events into
threads in the pool without requiring additional I/O threads

•Each strategy is appropriate for certain application domains
•e.g., certain hard-real time applications cannot incur the non-
determinism & priority inversion of additional request queues

•To evaluate each approach we must understand their
consequences
•Their pattern descriptions capture this information
•Good metrics to compare RT-CORBA implementations

University of California, Irvine
Siemens AG 29

D. Schmidt, M. Kircher QoS-enabled Middleware

The Half-Sync/Half-Async Pattern
Sync
Service
Layer

Async
Service
Layer

Queueing
Layer

<<read/write>> <<read/write>>

<<read/write>>

<<dequeue/enqueue>> <<interrupt>>

Sync Service 1 Sync Service 2 Sync Service 3

External
Event Source

Queue

Async Service

Intent
The Half-Sync/Half-Async
architectural pattern
decouples async & sync
service processing in
concurrent systems, to
simplify programming
without unduly reducing
performance

• This pattern defines two service
processing layers—one async and
one sync—along with a queueing
layer that allows services to
exchange messages between the
two layers

• The pattern allows sync services,
such as servant processing, to run
concurrently, relative both to each
other and to async services, such as
I/O handling & event demultiplexing

work()

notification

: External Event
Source

: Async Service : Queue

notification

read()

enqueue()

message

: Sync Service

work()

message

read()

message

University of California, Irvine
Siemens AG 30

D. Schmidt, M. Kircher QoS-enabled Middleware

Queue-per-Lane Thread Pool Design
Design Overview

• Single acceptor endpoint
• One reactor for each priority level
• Each lane has a queue
• I/O & application-level request
processing are in different threads

Pros
• Better feature support, e.g.,

• Request buffering
• Thread borrowing

• Better scalability, e.g.,
• Single acceptor
• Fewer reactors
• Smaller IORs

• Easier piece-by-piece integration into
the ORB

Cons
• Less efficient because of queuing
• Predictability reduced without
_bind_priority_band() implicit
operation

University of California, Irvine
Siemens AG 31

D. Schmidt, M. Kircher QoS-enabled Middleware

The Leader/Followers Pattern
Intent
The Leader/Followers architectural
pattern provides an efficient
concurrency model where multiple
threads take turns sharing event
sources to detect, demux, dispatch, &
process service requests that occur on
the event sources

TCP Sockets +
select()/poll()

UDP Sockets +
select()/poll()

Iterative
Handle Sets

TCP Sockets +
WaitForMultple

Objects()

UDP Sockets +
WaitForMultiple

Objects()

Concurrent
Handle Sets

Iterative HandlesConcurrent Handles
Handles

Handle
Sets

Handle uses

demultiplexes

*

*

Handle Set
handle_events()
deactivate_handle()
reactivate_handle()
select()

Event Handler
handle_event ()
get_handle()

Concrete Event
Handler B

handle_event ()
get_handle()

Concrete Event
Handler A

handle_event ()
get_handle()

Thread Pool

join()
promote_new_leader()

synchronizer

University of California, Irvine
Siemens AG 32

D. Schmidt, M. Kircher QoS-enabled Middleware

Reactor-per-Lane Thread Pool Design
Design Overview
•Each lane has its own set of
resources
• i.e., reactor, acceptor
endpoint, etc.

• I/O & application-level request
processing are done in the
same thread

Pros
•Better performance

•No context switches
•Stack & TSS optimizations

•No priority inversions during
connection establishment

•Control over all threads with
standard thread pool API

Cons
•Harder ORB implementation
•Many endpoints = longer IORs

University of California, Irvine
Siemens AG 33

D. Schmidt, M. Kircher QoS-enabled Middleware

Buffering Client Requests

SERVER ORB COREI/O
THREADS

Thead Pool A

PRIORITY 10 PRIORITY 35 PRIORITY 20

Thead Pool B

•Solution: Buffer client requests in
ORB

•RT CORBA thread pool buffer
capacities can be configured
according to:
1. Maximum number of bytes

and/or
2. Maximum number of requests

•Problem: Some types of
applications need more buffering
than is provided by the OS I/O
subsystem
•e.g., to handle “bursty” client
traffic

University of California, Irvine
Siemens AG 34

D. Schmidt, M. Kircher QoS-enabled Middleware

Configuring Request Buffering
// Create a thread pool with buffering
RTCORBA::ThreadpoolId pool_id =

rt_orb->create_threadpool (1024 * 10, // Stacksize
true, // Enable buffering
128, // Maximum messages
64 * 1024); // Maximum buffering

// Create Thread Pool Policy
RTCORBA::ThreadpoolPolicy_var tp_policy =

rt_orb->create_threadpool_policy (pool_id);

// Use that policy to configure the RT-POA

•Since some RT ORBs don’t use queues to avoid priority inversions, an ORB
can reject a request to create a thread pool with buffers
•This design is still compliant, however, since the maximum buffer capacity
is always 0

•Moreover, queueing can be done within the I/O subsystem of the OS

University of California, Irvine
Siemens AG 35

D. Schmidt, M. Kircher QoS-enabled Middleware

•Problem: An ORB & application may
need to use the same type of mutex
to avoid priority inversions
• e.g., using priority ceiling or priority
inheritance protocols

•Solution: Use the
RTCORBA::Mutex interface to
ensure that consistent mutex
semantics are enforced across ORB
& application domains

Synchronizing Objects Consistently

RTCORBA::Mutex_var mutex = rtorb->create_mutex ();
...
mutex->lock ();
// Critical section here…
mutex->unlock ();
...
rtorb->destroy_mutex (mutex);

CLIENT

Mutex
lock()
unlock()
try_lock()

ORB CORE

OBJECT
ADAPTER

OBJECT
(SERVANT)

mutex3

mutex2

mutex4

mutex1

create_mutex()
is a factory method

University of California, Irvine
Siemens AG 36

D. Schmidt, M. Kircher QoS-enabled Middleware

Configuring Custom Protocols
•Problems: Selecting communication protocol(s) is crucial to obtaining QoS

• TCP/IP is inadequate to provide end-to-end real-time response
• Thus, communication between Base_Station, Controllers, & Drones must
use a different protocol
• e.g., VME, 1553, shared memory, VIA, firewire, bluetooth, etc.

• Moreover, communication between Drone & Controller cannot be queued
•Solution: Protocol selection
policies
• Both server-side & client-side
policies are supported

• Some policies control protocol
selection, others configuration

• Order of protocols indicates
protocol preference

• Some policies are exported to
client in object reference

Ironically, RT-CORBA specifies
only protocol properties for TCP!

University of California, Irvine
Siemens AG 37

D. Schmidt, M. Kircher QoS-enabled Middleware

Example: Configuring protocols
•First, we create the protocol properties

RTCORBA::ProtocolList plist; plist.length (2);
plist[0].protocol_type = MY_PROTOCOL_TAG; // Custom protocol
plist[0].trans_protocol_props =

/* Use ORB proprietary interface */
plist[1].protocol_type = IOP::TAG_INTERNET_IOP; // IIOP
plist[1].trans_protocol_props = tcp_properties;
RTCORBA::ClientProtocolPolicy_ptr policy =

rtorb->create_client_protocol_policy (plist);

•Next, we configure the list of protocols to use

RTCORBA::ProtocolProperties_var tcp_properties =
rtorb->create_tcp_protocol_properties (

64 * 1024, /* send buffer */
64 * 1024, /* recv buffer */
false, /* keep alive */
true, /* dont_route */
true /* no_delay */);

University of California, Irvine
Siemens AG 38

D. Schmidt, M. Kircher QoS-enabled Middleware

Controlling Network Resources
•Problems:

•Avoiding request-level (“head-of-line”)
priority inversions

•Minimizing thread-level priority inversions
•Control jitter due to connection
establishment

•Solution: Use explicit
binding mechanisms, e.g.,
•Connection pre-allocation

•Eliminates a common
source of operation jitter

•Priority Banded
Connection Policy
• Invocation priority
determines which
connection is used

•Private Connection Policy
•Guarantees non-
multiplexed connectionsORB CORE

stop() turn() query_state()

query_state()turn()stop()

OBJ REF

prio
200

prio
200

prio
100 Controller

Drone

University of California, Irvine
Siemens AG 39

D. Schmidt, M. Kircher QoS-enabled Middleware

Pre-allocating Network Connections
•Problem: Dynamically establishing connections from the base station
to/from the drones can result in unacceptable jitter, which can be
detrimental to time-critical applications

•Solution: Pre-allocate one or more connections using the
Object::_validate_connection() operation, which is defined in the
CORBA Message specification
Drone_var drone = …; // Obtain reference to a drone

// Pre-establish connections using current policy overrides
CORBA::PolicyList_var inconsistent_policies;

// The following operation causes a _bind_priority_band()
// “implicit” request to be sent to the server
CORBA::Boolean successful =

drone->_validate_connection (inconsistent_policies);

University of California, Irvine
Siemens AG 40

D. Schmidt, M. Kircher QoS-enabled Middleware

Priority Banded Connection Policy
•Problem: To minimize priority inversions, high-priority operations
should not be queued behind low-priority operations

•Solution: Use different connections for different priority ranges via
the RT CORBA PriorityBandedConnectionPolicy

`

query_state()

stop()

ORB CORE

stop() turn() query_state()

OBJ REF

prio
200

prio
200

prio
100

turn()

University of California, Irvine
Siemens AG 41

D. Schmidt, M. Kircher QoS-enabled Middleware

Private Connection Policy
•Problem: To minimize priority
inversions, some applications
cannot share a connection
between multiple objects
•e.g., sending a stop() request
should use exclusive, pre-allocated
resources

•Solution: Use the RT CORBA
PrivateConnectionPolicy
to guarantee non-multiplexed
connections

`

query_state()

stop()

ORB CORE

stop() turn() query_state()

OBJ REF

prio
200

prio
200

prio
100

OBJ REF

`

turn()

University of California, Irvine
Siemens AG 42

D. Schmidt, M. Kircher QoS-enabled Middleware

Simplifying Application Scheduling
•Problem: Although RT-CORBA gives developers control over system
resources it has two deficiencies:
•It can be tedious to configure all the various policies
•Application developer must select the right priority values

•Solution: Apply the RT-CORBA Scheduling Service to simplify application
scheduling
•Developers just declare the current activity
•Properties of an activity are specified using an (unspecified) external tool
•Note that the Scheduling Service is an optional part of the RT-CORBA 1.0
specification

// Find the scheduling service
RTCosScheduling::ClientScheduler_var scheduler = … ;

// Schedule the ‘edge_alarm’ activity
scheduler->schedule_activity (“edge_alarm”);

controller->edge_alarm ();

The client-side
programming model
Is simple

University of California, Irvine
Siemens AG 43

D. Schmidt, M. Kircher QoS-enabled Middleware

Server-side Scheduling
// Obtain a reference to the scheduling service
RTCosScheduling::ServerScheduler_var scheduler = … ;

CORBA::PolicyList policies; // Set POA policies

// The scheduling service configures the RT policies
PortableServer::POA_var rt_poa = scheduler->create_POA

(“ControllerPOA”,
PortableServer::POAManager::_nil (),
policies);

// Activate the servant, and obtain a reference to it.
rt_poa->activate_servant (my_controller);
CORBA::Object_var controller =

rt_poa->servant_to_reference (my_controller);

// Configure the resources required for this object
// e.g., setup interceptors to control priorities
scheduler->schedule_object (controller, “CTRL_000”);

Servers can also be
configured using the
Scheduling Service

University of California, Irvine
Siemens AG 44

D. Schmidt, M. Kircher QoS-enabled Middleware

Other Relevant CORBA Features
•RT CORBA leverages other advanced CORBA features to provide a more
comprehensive QoS-enabled ORB middleware solution, e.g.:
• Timeouts: CORBA Messaging
provides policies to control roundtrip
timeouts

• Reliable oneways: which are also
part of CORBA Messaging

• Asynchronous invocations: CORBA
Messaging includes support for type-
safe asynchronous method invocation
(AMI)

• Real-time analysis & scheduling:
The RT CORBA 1.0 Scheduling
Service is an optional compliance
point for this purpose
• However, most of the problem is left
for an external tool

• Enhanced views of time: Defines
interfaces to control & query “clocks”
(orbos/1999-10-02)

• RT Notification Service: Currently in
progress in the OMG (orbos/00-06-
10), looks for RT-enhanced
Notification Service

• Dynamic Scheduling: Currently in
progress in the OMG (orbos/98-02-
15) to address additional policies for
dynamic & hybrid static/dynamic
scheduling

University of California, Irvine
Siemens AG 45

D. Schmidt, M. Kircher QoS-enabled Middleware

Controlling Request Timeouts
•Problem: Our Controller object should not block indefinitely when trying
to stop a drone that’s fallen off an edge!

•Solution: Override the timeout policy in the Drone object reference
// 10 milliseconds (base units are 100 nanosecs)
CORBA::Any val; val <<= TimeBase::TimeT (100000UL);

// Create the timeout policy
CORBA::PolicyList policies (1); policies.length (1);
policies[0] = orb->create_policy

(Messaging::RELATIVE_RT_TIMEOUT_POLICY_TYPE, val);

// Override the policy in the drone
CORBA::Object_var obj = drone->_set_policy_overrides

(policies, CORBA::ADD_OVERRIDE);

Drone_var drone_with_timeout = Drone::_narrow (obj);
try { drone_with_timeout->speed (0); }
catch (CORBA::TIMEOUT e) { // Handle exception }

University of California, Irvine
Siemens AG 46

D. Schmidt, M. Kircher QoS-enabled Middleware

Reliable Oneways
• Problem: The oneway semantics are not precise

enough for Real-time applications
• Solution: Use the SyncScope policy to control it.

Network

Client Object
(Servant)

ORB CORE

oneway_request()

SY
N

C
_N

O
N

E

SY
N

C
_W

IT
H

_T
R

A
N

SP
O

R
T

SY
N

C
_W

IT
H

_T
A

R
G

ET

SY
N

C
_W

IT
H

_S
ER

VE
R

Object Adapter

University of California, Irvine
Siemens AG 47

D. Schmidt, M. Kircher QoS-enabled Middleware

Open Issues with the Real-Time
CORBA Specification

1.No standard APIs for setting & getting priority mappings & priority
transforms

2.No compelling use-cases for server-set client protocol policies
3.Semantic ambiguities

•Valid policy configurations & their semantics
• e.g., should a protocol property affect all endpoints or just some?

•Resource definition & allocation
•Mapping of threads to connection endpoints on the server

4.The bounds on priority inversions is a quality of implementation
•No requirement for I/O threads to run at the same priority as request
processing threads

Bottom-line: RT CORBA applications remain
dependant on implementation details

University of California, Irvine
Siemens AG 48

D. Schmidt, M. Kircher QoS-enabled Middleware

Additional Information
•CORBA 2.4 specification (includes RT-CORBA)
•www.omg.org/technology/documents/formal/corbaiiop.htm

•Patterns for concurrent & networked objects
•www.posa.uci.edu

•ACE & TAO open-source middleware
•www.cs.wustl.edu/~schmidt/ACE.html
•www.cs.wustl.edu/~schmidt/TAO.html

•CORBA research papers
•www.cs.wustl.edu/~schmidt/corba-research.html

•CORBA tutorials
•www.cs.wustl.edu/~schmidt/tutorials-corba.html

University of California, Irvine
Siemens AG 49

D. Schmidt, M. Kircher QoS-enabled Middleware

R&D User
Needs

Standard
COTS

R&D

Concluding Remarks
• RT CORBA 1.0 is a major step forward for
QoS-enabled middleware
• e.g., it introduces important capabilities to

manage key ORB end-system/network
resources

• We expect that these new capabilities will
increase interest in--and applicability of--
CORBA for distributed real-time &
embedded systems

• RT CORBA 1.0 doesn’t solve all real-time
development problems, however

• It lacks important features:
• Standard priority mapping manager
• Dynamic scheduling

• Addressed in RT CORBA 2.0
• Portions of spec are under-specified

• Thus, developers must be familiar with the
implementation decisions made by their
RT ORB

• Our work on TAO has helped advance
middleware for distributed real-time &
embedded systems by implementing RT
CORBA in an open-source ORB &
providing feedback to users & OMG

University of California, Irvine
Siemens AG 50

D. Schmidt, M. Kircher QoS-enabled Middleware

Towards Patterns and Pattern Languages
for OO Distributed Real-time and

Embedded Systems

OOPSLA 2001 October 14th – October 18th

Workshop on

Michael Kircher, Siemens AG, Germany
Prashant Jain, Siemens AG, India
Doug Schmidt, DARPA, USA
Angelo Corsaro, Washington University, USA
Kirthika Parameswaran, Telcordia, USA

