
Transitioning to a Software Product Family Approach –
Challenges and Best Practices

Michael Kircher, Christa Schwanninger, Iris Groher

Siemens AG, Corporate Technology, Software and System Architectures
{michael.kircher, christa.schwanninger, iris.groher.ext}@siemens.com

Abstract

This paper explains the challenges we
experienced when introducing a software
product family approach in Siemens business
groups. Our vision is a complete and easily
accessible cookbook with advice on how to start
such an approach. In a first attempt, we
identified a collection of more or less successful
best practices. On the suggestions and the open
questions we are going to present in this paper,
we search validation by practitioners in the field.

1. Introduction

This experience report describes the current

state of thought regarding a broad introduction
of a software product family approach at
Siemens AG. Our focus is on products and
projects with an essential weight on software.
Siemens AG is one of the world’s largest
electrical engineering and electronics companies.
Most of Siemens’ approximately 45,000
researchers and developers are working on
software projects, making the company one of
the world’s largest software producers. The
company is divided into more than a dozen
business groups that cover different domains,
such as medical, telecommunication or industrial
automation. These business groups have a lot of
domain knowledge and many success stories to
tell; nevertheless staying competitive requires
constant improvement, and the ability to deliver
high quality products faster than the competition.
A product family approach seems to be a
promising approach to decrease time-to-market
for a number of business groups that develop
similar or successive products in the same
domain.

Acknowledging the large amount of research
as a team of newcomers, we struggled with the

accessibility of the available results. With the
goal of making the introduction of a software
product family approach easier in the future, we
document the challenges, existing best practices,
our first experiences, and motivate a cookbook
on how to transition to a software product family
approach.

The paper is organized as follows: Section 2
presents a review of existing research in the area
of software product family development. Section
3 describes the different business models used by
the business units. Section 4 presents the
challenges that we experienced when introducing
a product family approach. Section 5 contains a
discussion on best practices we identified. We
conclude the paper in section 6.

2. Existing research

Having identified the need for a software

product family approach, the first step was to
scan the current literature in the field for
potentially helpful information. We found a
number of groups doing research in this area,
both in academia and in industry. We are also
aware of funded projects (CAFÉ [CAFÉ],
ESAPS [ESAPS], etc.) that produced an
enormous amount of results. The difficulty is to
read and evaluate these results.

In the course of our research we also studied
the books of Pohl et al [PBL05], Bosch
[Bosc00], Böckle et al [BKPS04], and Clements
and Northrop [ClNo01]. We read the case
studies of Marketmaker, Bosch, Axis, Securitas,
etc. Even though we learned a lot from the case
studies and the theory, we as newcomers were
not able to derive a structured approach on how
to solve the challenges at hand. It seems that
there were success stories, but there are no
strong rules that can be derived from their
experience. Moreover case studies usually do not
reveal all the details; especially because they do
not allow the public to know about the
drawbacks experienced in an organization.

The business groups we are in contact with
have special considerations that make a
transition hard to achieve. The most challenging
factors are: the size of dozens of developers
involved in most development projects and the
big bag of legacy they carry with them. Among
the published case studies, we could not find one
with a similar context and detailed enough to
serve as example on how to start a software
product family approach.

Triggered by our history of pattern writing
[POSA1], [POSA2], [POSA3], what we missed
was quite obvious: Patterns that explicitly define
the context and the problem with all the forces,
for which the proposed solution is applicable
[Copl96]. The patterns in [ClNo01] can be
considered as a first start, even though we are
encouraging a much stronger focus on the
context, problem, and forces. Patterns are so
interesting because they are based on at least
three known uses, making them in a certain way
credible and helping to differentiate between
proven practice and approximated theory.

Quite early in our investigation, we became
aware that introducing a software product family
approach would require changes, heavy changes
at all organizational, process, and technical
levels. But what organizational structures are
best suited for adopting a software product
family approach? How can an entire
organization be motivated to invest the effort in
starting it? What are the necessary skills needed
for an organization to be successful? In the
course of our project reviews we have seen
various more or less (un-)successful attempts to
reorganize. As Bosch [Bosc00] discusses in his
chapter “Organizing for software product lines”
there is a multitude of options – and none are
likely to succeed when the people in the
organization are resistant to change. But it is not
enough to know what does not work, we want to
find out what works.

Being asked what skills the involved staff
needs to have, we tend to say: good software
engineering skills, as opposed to pure
programming or pure project management skills.
We expect from a software engineer to be able to
recognize the need for a change and to
proactively influence the environment: managers
that shape organizations on the one side, and
colleagues that define the actually lived
processes on the other side. Maybe this view is
naïve and too technical but it is our impression
that engineers are often the drivers for software
product families. Nevertheless, the role of

product management is critical. We have seen
cases where only the engineers knew the actual
variability, while product management knew
only that they need to have a shorter time-to-
market, but did not know how to achieve it. See
also our suggestion on this topic in section 5.2.
In the end both sides are necessary for a
successful transition: the engineer has to
contribute the technical realities and the product
manager to contribute the business case.

To sum up: We are missing a complete but
also accessible cookbook, such as pattern
languages [Copl96], to aid in the introduction of
a software product family approach. To start
with, we determined that there is a need in the
area of motivation, organization, and skills. The
key question is: Is the field of software product
families mature enough to start the necessary
pattern mining?

3. Starting points

This section describes specific business

models and challenges that we face. It motivates
the thread of thought and why the transition to a
software product family approach seems so hard.

In our view, two traditional models of
business exist: product-driven business and
solution-driven business. We will explain the
differences and the specific challenges in the
following sections.

3.1 Product-driven business

We consider a product-driven business to be
an organization with one or a few standardized
products it offers. These products are
continuously enhanced to new versions. The
motivation for this organizational set-up is to
minimize specific customizations for each
customer to keep development efforts low.

But reality is complex and puts at least the
following forces on the strategy:

• Today’s customers expect a high
level of integration with 3rd party
applications and systems, including
legacy.

• Every installation at a customer
requires some specifics.

• In a product-driven business the
domain is usually stable, so a lot of
competitors share the same market.
To survive, the innovation cycles
need to be shorter than the ones of
the competiton and the product must

be able to adapt to customer wishes
to a certain extent.

Due to those issues, the organization has to
constantly balance between competing forces, at
least between sales – optimizing the sales
numbers by promising customer-specific
adaptations – and development – trying to keep
the architecture clean and delivering with
acceptable delay. As far as architecture is
concerned, every day brings multiple temptations
to change product internals, eroding the
architecture, the basis for future ease of reuse.

Examples of product-driven businesses are:
• Individual medical devices, such as

magnetic resonance systems
• Programmable logic controllers

3.2 Solution-driven business

A business that promises every customer a
custom-made suit is a solution-driven business.
Customers like solutions, because they allow
them to differentiate themselves from
competitors. To survive in a solution-driven
business, companies need to be effective and
efficient, assuming they are not alone on the
market. From our experience, technical
effectiveness is almost immediately associated
with the term ‘platform’. So to say: ”If only we
have a proper platform, we will be able to
deliver those little customer-specifics on top of
the platform with minimal effort.”

Also here, reality imposes a multitude of
challenges:

• The customer-specifics do not
localize easily in customer-specific
additions, but often have impact on
the platform.

• Having sold the first solutions, the
nightmare of unmanageable
variability and associated complexity
of customer-specifics kicks in.

• On every extension of the software
the development group is drowned
by the variability of deployed
solutions, having to guarantee that
the delivery of the next version for
an individual customer still performs
as before, while mainly adding new
features. Even small changes require
huge efforts.

• The development group is not the
only one experiencing problems: The
system test starts to take longer and
longer, managing the solutions

becomes a configuration
management nightmare.

• Next, sales and product management
loose the overview, which customer-
specific feature is already
implemented in which version at
which customer.

To summarize, organizations often become
incapable of planned and controlled reuse. The
´platform´ has vanished.

Examples of solution-driven businesses are:
• Toll systems
• Telecom switches

3.3 Software product family promise

The software product family approach
promises solutions for both, product-driven and
solution-driven businesses. The approach claims
to maximize reuse through best practices
regarding organization and process, and
architecture. One of the key factors is the explicit
consideration of commonality and variability at
all organizational levels and all process phases.

From our experience, the prerequisite to cope
with variability in the architecture and
implementation is to thoroughly understand the
variability in the problem space1 first: this
knowledge is captured in a domain model, the
hierarchical organization of the features and
requirements, and the documentation of the
dependencies and constraints of variability in a
feature model [Kang90]. The sole consideration
of the solution space, the architecture, the tools,
and the implementation, is not sufficient. The
need for variability in the solution space is
always triggered by the need for variability in
the problem space. Only understanding and
explicitly documenting this connection helps to
be prepared for evolution. Therefore, a proper
domain analysis is the first operational step in
starting a product family.

This was one of the first important lessons
learned. Having our roots in software
architecture, our first attempts were to only
analyze commonality and variability in software
products and architectures but not considering
the problem space.

4. Challenges

1 Czarnecki and Eisenecker [CaEi00] were
amongst the first to introduce the strong
separation of problem space and solution space.

Based on our consulting and research
activities, we came across the following
challenges that we still search answers for.

Agility

Innovative businesses require fast feedback
cycles between requirements engineering,
development, and field trial. The usage of agile
processes therefore comes easily into mind. But
how does a software product family approach
integrate with best practices of Agile
Methodologies, where documentation is kept to a
minimum and decisions local within the
development teams?

Skills

Very much related to the topic of
organizational maturity [SEI06] is the question
of education and skills of product managers,
developers, and architects. Which skills does the
staff involved in the development of a software
product family approach need to have? Is the
needed software product family expertise only
restricted to some key roles?

Driver

Who should drive the introduction of a
software product family approach? Is it the
software engineers, as we claimed above? Or can
it be any role, as long as the person who fulfills
it is kind of a heroic leader? How can the driver
quickly achieve a thorough and complete
problem understanding? How can the driver
convince others in the organization of the
necessity to transition to a software product
family approach?

Outsourcing

We have seen outsourcing of complete
software development, while keeping sales and
product management with the contracting
organization, combined with a software product
family approach fail. Are there any success
stories of combining outsourcing of development
with a software product family approach?

Tools

The management and tracking of variability
causes large complexity. In order to handle such
complexity, tools are typically introduced. Two
areas for potential tool support are commonly
known: configuration management, especially in
the context of software product families; and
traceability tools to map features, requirements,
and variants to design and implementation, and

keep them in synch. We see two specific
challenges here: Firstly, today’s tools, such as
commercially available configuration
management tools do not provide the necessary
support for variations, which are inherently
orthogonal to versions – simple branching is not
sufficient. Secondly, the processes in the field
are not prepared to support such intensive
tracing and tracking. To our knowledge an
integrated tool support does not exist.

5. Best practices discussion

In this section we partition our experiences

about best practices into:
• Proven experiences, and
• Guesses
• Research

The subsections are correspondingly
arranged.

5.1 Proven experiences

In this section we briefly describe what
worked for us:

Software Architect in place

The fact that the role of the software architect
must be staffed in every large project is well
known. The problem is the scalability of this
role. In large projects technology and design
decisions can no longer be performed by single
persons, not mentioning the missing commitment
of developers that get design decisions only
dictated.

To achieve scalability we defined the
priorities of an architect’s responsibility as in the
list below. The scalability is basically achieved
through delegation and review. The architect
should

1. Communicate requirements and design
guidelines inside the development team
and outside to product management
(highest priority).

2. Ensure consistency of the overall
architecture by reviewing the design
made by individual developers.

3. Guide developers in doing good design.
4. Contribute his design knowledge.

For a more complete list of responsibilities,
we recommend [CoHa04].

Separation between problem space and
solution space

In discussions and analysis of requirements
but also during design decisions, one should
strictly separate between problem and solution
space. In our experience this avoids much
confusion. In requirements analysis it helps to
separate pure customer requirements from
technical requirements. Technical requirements
are derived from customer requirements and
already show an influence of possible solutions –
the solution space. Clean separation of
requirements eases argumentation and decision
making during design. Design decisions can
become more consistent and concise.

Maturity of organizations

The organizations need to have achieved a
certain level of maturity [SEI06] before they
should consider a software product family
approach. At a minimum the following artifacts
have to be available:

• Reasonable requirements – to
perform a commonality-variability
analysis

• Architecture description – to be able
to map identified variation points to
the solution

• Automated system tests – to enable
fast adaptations

• Sophisticated configuration manage-
ment – else every change is a risk for
inconsistencies

A cooperation between Nokia, SEI and
Siemens recently proposed an extension to
CMMI in an ITEA project on product families
called “Families”. The result is the Family
Maturity Framework (FMF) as described in
[KGMG05].

Mechanisms for implementing variability

To cope with variations in implementation
assets the following two main options exist:

Another level of indirection – The typical
design patterns for decoupling and configuration
fall in this category, such as Factory, Strategy,
Extension Interface, Bridge and Adapter, but
also general framework principles such as
inversion of control [Fowl04] and dependency
injection, as intensively used by the Spring
framework [Spri06]. To avoid the mingling of
variations and allow for easy re-configuration,
configuration options are externalized into
configuration files, where variations can be
expressed declaratively. Certain architectural

patterns [POSA1], sometimes also referred to as
architectural styles, such as event-based
communication and Pipes and Filters
architectures allow for more easy variation, as
they inherently decouple a system into
exchangeable parts.

Language and generative support – This
includes approaches, such as aspect-oriented
programming [ECA04], where variations are
encapsulated as aspects [MeOs04], template
meta programming [CaEi00], where
commonalities are expressed in templates and
variability through template parameters, or
domain-specific languages (DSL) combined with
code generation [StVo05]. Further, macro
languages, such as the C++ #ifdef construct,
allow to for compile-time binding in source
code.

The selection of a variability mechanism
determines where the complexity is placed, for
example in the case of the patterns it is
internalized into a software artifact, in the case
of a generator it is externalized to a separate
tool/description. Generally, we think that
implementation strategies for variability are one
of the most mature areas of software product
families. We do not expect massive research
necessary in that area.

Close collaboration between product
management and development

Very often product management and
development do only collaborate by exchanging
requirements specifications and functional
specifications. In our experience a close
collaboration, especially an intensive integration
of product management is important. In a
software product family approach, product
managers should not only care about the final
product as black box, but should lead and
monitor also the successful creation of reusable
core assets.

5.2 Guesses

This section discusses ‘guesses’, things that
we have first experiences with, but could not
validate their correctness and effectiveness yet.

Introduction steps

The following introduction steps have been
elaborated doing consulting for our business
groups. It has been influenced by the personal
conversation with Felix Bachmann [Bach06].
Our hope is that those steps lead in some ways to
a set of best practices that help:

1. Assessment – Assess the process, the
organization and the architecture
regarding the potential for improvement
through a strengths-weaknesses-
opportunities-threats (SWOT) analysis.
Two kinds of such reviews are
architecture reviews and CMMI
[SEI06] assessments that our business
groups conduct on a regularly basis.
This gives evidence that the
organization and the architecture is
mature enough for a product family
approach. For us an assessment is the
pre-requisit for the economical analysis.

2. Awareness – Ensure that key decision
makers, including top level
management of product management
and development understand the
potential and need for improvement.
The data used to raise the awareness
stems from the assessments. We have
no recipe in order to convince decision
makers, yet, besides common sense and
case studies.

3. Scoping – The determination of the
scope of a product family is a common
practice and is already documented in
various literature, such as [Bosc00] and
[ClNo01].

4. First seed – Start top down with a few
dozen features derived from sales and
marketing catalogs. Find obvious
variability in those features and
structure the results. In case it does not
exist yet, start developing a domain
model from the domain knowledge in
the organization. In case you succeed,
you most likely have gained the
commitment of product management.

5. Involve development – Involve the
development department, show them
your first analysis results and try to find
together with them the corresponding
variation points in the architecture and
implementation. In case you succeed,
key people of the development
department understand the improvement
and support the structured approach of
variant management.

6. Shape organization – Introduce
permanent roles to foster variant
management in the organization. The
roles of product manager, system
architect, and software architect have to
adopt software product family practices.

7. Sharpen the saw – When the first steps
succeed, a broader introduction of a
software product family approach can
be envisioned. This means
systematically increasing the amount of
knowledge about all the artifacts and to
make this knowledge easily accessible.
Product family engineering has a lot to
do with proper knowledge management.

Domain modeling and variant management

In a few and simple cases we were able to
perform some first domain models and variant
management attempts, but we are unsure
whether this scales to large systems. Here is a list
of steps that we followed:

1. Identification of terminology and
constraints: The outcome is a glossary
of terms, definitions of the terms,
documentation of rules and constraints
that are imposed by the domain, roles of
humans or systems in the domain.

2. Problem space description: The
outcome are requirements, features that
group requirements, use cases and
subordinate scenarios that explain
features, dependencies and constraints
of the problem space.

3. Variability analysis: Identification of
commonality and variability: variations
and variation points.

4. Solution space description: The
outcome is an architecture specification
describing all involved responsibilities,
dependencies, and the design reasoning
of the existing or planned system,
respectively.

5. Mapping of problem space to solution
space: This involves the mapping of
feature diagrams in the problem space
to solution artifacts like design snippets
and code files in the solution space.
Here we used pure::variants [Pure06] as
tool support.

6. Tracking: Keeping the gained
knowledge up-to-date and in sync.

Responsibility for variability management

The challenge in variability management is
that the complete organization has to be
involved, while most input has to come from
product management and development. A
separate organization for variability management
is likely not to be successful [Bach06], as it
easily leads to inconsistencies with the actual

implementation and potential ivory tower
decisions. Therefore, we suggest an approach,
similar to the one validated for architects, as
mentioned above: scale through delegation and
review. Let variant management be performed
by every involved staff, but orchestrate it
through a single person or a small cohesive team
that reviews and coordinates the efforts, ensuring
quality and consistency.

5.3 Research

This section describes current research work.

Tool support for requirements analysis
Proper requirements engineering is vital for

the success of a system family approach. When
requirements elicitation does not work, there is
no basis for building a software product family.
Also, having requirements only gathered in
documents is not sufficient for transitioning to a
software product family approach. It becomes
important to replace the potentially huge
requirements documents with a more formal
requirements database from which requirements
can be systematically grouped into a customized
requirements document for each product. The
challenge is to analyze the existing documents
and to detect the features and the variability,
especially when masses of information are
distributed among different types of documents.

In this area natural language processing
(NLP) could be used to deal with huge amounts
of only semi-structured data contained in
classical requirements documents. Existing work
[BFGL02] in this area uses a combination of use
cases and NL techniques to detect potential
variability. New is the combination of NLP and
aspect-oriented (AO) [ECA04] techniques. There
is ongoing research on requirements analysis,
commonality and variability analysis, including
automatic feature derivation within software
product family development [LSR05]. These
techniques have already been applied for
concern and aspect mining [SCRR05]. NLP
techniques usually take text based requirements
documents as input and structure them by
identifying parts that talk about the same
concepts and relationships between the identified
parts. In the context of software product families
such parts can form potential features and
relationships can reveal commonalities and
variability.

In close collaboration with the researchers
building these tools we evaluated them in real
business projects. The tool we used [SCRR05]

computes statistics of occurrences of words
within the document, which allows identifying
the significant concepts of the input document.
Users can select a set of these significant
concepts for structuring the documents. For
instance, a set of important nouns can be selected
as viewpoints, a set of non-functional
requirements are identified as aspects after which
requirements from the documents are allocated
to viewpoints and aspects. Relationships
between those identified concepts are then
computed automatically by the tool. We
identified potential for improvement in multiple
areas:

• Granularity: Requirements must be
expressible across multiple
sentences, not per sentence, as done
presently.

• Structure: The existing structure of a
document, e.g. paragraphs, and
collocation of sentences, should be
used as semantic input.

• Multiple files: When multiple
products use a common platform,
individual requirements documents
of each product have to be analyzed.
In such situations, there is a need to
transfer and apply findings from one
document to another. For example,
viewpoints should be reused and not
computed from scratch for every
processed file.

• Domain glossary: A purely statistical
analysis of relevant terms may not be
sufficient; domain experts should be
able to feed the domain glossary into
the knowledge base of the tool.
Accurate and completely automated
discovery of domain knowledge is
impossible, most notably because
such knowledge is often implied, and
not explicitly stated in the
documents.

• Keywords: Detection of
commonality and variability is
currently based on commonality/
variability word classes from generic
word classes of natural language
(e.g., ‘amount’, ‘each’, ‘different’
and similar words indicate that
variability is implied in general
speech). More studies are required in
order to develop a dedicated lexicon
for variability/ commonality in
requirements of product families.

Even though these tools are still in a research
state, it was worth looking at them. A complete
automation is not realistic, but such tools could
possibly assist engineers in building domain and
feature models. We envision development of an
intelligent knowledge base similar to those by
expert systems [AAAI06] for domain knowledge
and previous findings from documents of other
family members. The expertise of domain
experts would then be accumulated with the
derived knowledge from NLP analysis
approaches.

As a key finding we confirmed that a domain
model is an essential starting point for variability
analysis.

6. Conclusion

In section 2 we motivated the need for more

fine grained and detailed guidance on how to
start a software system family, besides more
elaborative case studies we suggested as a
possible documentation format patterns and
pattern languages. Pattern mining has proven
successful already in many fields; we suggest
applying this technique also to the field of
software product families. The initial focus of
pattern mining should be on how to introduce
software product family approaches, as this
seems the biggest barrier.

In our discussion about challenges we showed
that software product families cannot be
considered in isolation. Key questions are how
such an approach integrates with agile processes
or how to ensure the necessary skills, which is a
competence management topic. Further, we
briefly elaborated on how to gain broad support
in an organization and how to deal with the
missing tool support, today.

Regarding the skills, we found that the theory
behind software product families can be quite
challenging to understand and even harder to
apply. To change this we envision broad
education about the topic of software product
families, starting with students at universities,
where not only software engineering, but also
software product line engineering should become
mandatory for computer science students.

What seems most settled is how to implement
variability, so we concluded to focus on other
areas of research more intensively instead.
Another settled topic for us is the discussion
about maturity. Only at a certain level of
maturity a software product family approach can
be successful. How to start with a new team on a

new task by instantly applying those practices is
a challenging task. To assess the maturity we use
regular architecture reviews and CMMI
assessments, in order to discover the potential
improvements when applying a software product
family approach in the respective projects.

We also presented topics, on which we
gathered only a little experience, yet, but which
look promising. Those include introduction
steps, an approach to domain and feature
modeling, a discussion about requirements
elicitation and analysis using natural language
processing, and suggestions regarding the roles
of development, product management, and
architecture. Especially on those topics, we will
further investigate in the near future.

7. Acknowledgements

We want to thank Dr. Lothar Borrman, Matt
Bass, Ruzanna Chitchyan, Frank Buschmann,
and Günter Böckle for their reviews of earlier
drafts of this paper.

8. References

[AAAI06] American Association for Artificial
Intelligence, Expert Systems,
http://www.aaai.org/AITopics/html/expert.html, 2006

[Antk05] M. Antkiewicz, Feature Modeling Tool,
http://gp.uwaterloo.ca/fmp, 2005

[Bach06] Personal conversation with Felix Bachmann,
SEI, January 2006

[BBKK02] G. Boeckle, J. Bermejo, P. Knauber, C.
Krueger, J. Leite, F. van der Linden, L. Northrop, M.
Stark, and D. Weiss; Adopting and Institutionalizing a
Product Line Culture, in: Proceedings of the 2nd
International Conference on Software Product Lines
(SPLC), San Diego, USA, Springer, Berlin Heidelberg
New York, LNCS 2379, 2002, pp. 48–59.

[BFGL02] A. Bertolino, A. Fantechi, S. Gnesi, G.
Lami, A. Maccari, Use Case Description o f
Requirements for Product Lines, Proc. of the
International Workshop on Requirements Engineering
for Product Lines (REPL). Essen, Germany, Sep.9,
2002.

[BKPS04] G. Böckle, P. Knauber, K. Pohl, K.Schmid,
Software-Produktlinien - Methoden, Einführung und
Praxis, dpunkt.verlag, 2004

[Bosc00] J. Bosch, Design & Use of Software
Architectures - Adopting and evolving a product-line
approach, Addision-Wesley, 2000

[CaEi00] K. Czarnecki, U. W. Eisenecker, Generative
Programming. Methods, Tools and Applications,
Addison-Wesley, 2000

[CAFÉ] From Concepts to Application in
System-Family Engineering (CAFÉ) Project,
http://www.esi.es/Cafe/

[ClNo01] P. Clements and L. Northrop, Software
Product Lines: Practices and Patterns, Addison-
Wesley 2001

[Copl96] J. Coplien, Software Patterns Management
Briefing,
http://users.rcn.com/jcoplien/Patterns/WhitePaper

[CoHa04] J. Coplien, N. Harrison, Organizational
Patterns of Agile Software Development, Pearson
Prentice Hall, 2004

[ECA04] T. Elrad, S. Clarke, and M. Aksit, Aspect-
Oriented Software Development, Addison-Wesley,
2004.

[ESAPS] Engineering Software Architectures,
Processes and Platforms for System-Families
(ESAPS) Project, http://www.esi.es/esaps/

[Evan03] E. Evans, Domain-Driven Design, Addison-
Wesley, 2003

[Fowl04] M. Fowler, Inversion of Control Containers
and Dependency Injection pattern,
http://www.martinfowler.com/articles/injection.html,
2004

[Kang90] Kang, K., et al. Feature-Oriented Domain
Analysis (FODA) Feasibility Study Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon
University, 1990

[KGMG05] K. Känsälä, P. Di Giacomo, J. Mansell, P.
Gutierrez, G. Boeckle, A. Schreiber, FAMILIES
Consortium-Wide Deliverable 2.1: Family Maturity
Framework (FMF),
http://www.esi.es/Families/famResults.html, 2005

[LSR05] N. Loughran, A. Sampaio, and A. Rashid,
From Requirements Documents to Feature Models for
Aspect Oriented Product Line Implementation,
Workshop on MDD in Product Lines, MODELS,
2005

[MeOs04] M. Mezini, K. Ostermann, Variability
Management with Feature-Oriented Programming and
Aspects, Foundations of Software Engineering, ACM
SIGSOFT, 2004

[PBL05] K. Pohl, G. Böckle, F. van der Linden,
Software Product Line Engineering - Foundations,
Principles, and Techniques, Springer, 2005

[POSA1] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal, Pattern-Oriented Software
Architecture – A System of Patterns, John Wiley &
Sons, Inc., 1996

[POSA2] D. Schmidt, M. Stal, H. Rohnert, and F.
Buschmann, Pattern-Oriented Software Architecture –
Patterns for Concurrent and Distributed Objects, John
Wiley & Sons, Inc., 2000

[POSA3] M. Kircher and P. Jain, Pattern-Oriented
Software Architecture – Patterns for Resource
Management, John Wiley & Sons, Inc., 2004

[Pure06] pure::variants, Variant management tool,
http://www.pure-systems.com/Variantenmanagement,
2006

[SCRR05] A. Sampaio, R. Chitchyan, A. Rashid, and
P. Rayson, EA-Miner: a Tool for Automating Aspect-
Oriented Requirements Identification, Automated
Software Engineering (ASE) conference, Long Beach,
California, USA, 2005.

[SEI06] Software Engineering Institute, Capability
Maturity Model Integration, (CMMI),
http://www.sei.cmu.edu/cmmi, 2006

[Spri06] Spring Framework,
http://www.springframework.org/, 2006

[StVo05] Tom Stahl, Markus Völter,
Modellgetriebene Softwareentwicklung, Techniken,
Engineering, Management, dPunkt, 2005
English version ‘Model-Driven Software
Development’ in preparation.

[WIT05] M. Wittmann et.al, System Family
Transition Economy,
http://www.esi.es/Families/famResults.html, 2005

